Photochemical smog, or ground-level ozone, has been the most recalcitrant of air pollution problems, but reductions in emissions of sulfur and hydrocarbons may yield unanticipated benefits in air quality. While sulfate and some organic aerosol particles scatter solar radiation back into space and can cool Earth's surface, they also change the actinic flux of ultraviolet (UV) radiation. Observations and numerical models show that UV-scattering particles in the boundary layer accelerate photochemical reactions and smog production, but UV-absorbing aerosols such as mineral dust and soot inhibit smog production. Results could have major implications for the control of air pollution.
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the Suomi National Polar‐orbiting Partnership (S‐NPP) spacecraft was launched in October 2011. The instrument has 22 spectral channels with band centers from 412 nm to 12,050 nm. The VIIRS aerosol data products are derived primarily from the radiometric channels covering the visible through the short‐wave infrared spectral regions (412 nm to 2250 nm). The major components of the VIIRS aerosol retrieval process are data screening, land inversion, ocean inversion, suspended matter typing, and aggregation. The primary data product produced is the aerosol optical thickness (AOT) environmental data record. A higher resolution AOT intermediate product is also produced. These AOT products and their corresponding retrieval algorithms are described in detail, including theoretical basis, retrieval limitations, and data quality flagging. Preliminary evaluation of the data products has been undertaken by the VIIRS aerosol calibration/validation team using Aerosol Robotic Network ground‐based observations to show that the performance of AOT retrievals meets the requirements specified in the Joint Polar Satellite System Level 1 requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.