Skin cancer is the most common form of cancer in the United States. The main cause of this cancer is DNA damage induced by the UV component of sunlight. In humans and mice, UV damage is removed by the nucleotide excision repair system. Here, we report that a rate-limiting subunit of excision repair, the xeroderma pigmentosum group A (XPA) protein, and the excision repair rate exhibit daily rhythmicity in mouse skin, with a minimum in the morning and a maximum in the afternoon/evening. In parallel with the rhythmicity of repair rate, we find that mice exposed to UV radiation (UVR) at 4:00 AM display a decreased latency and about a fivefold increased multiplicity of skin cancer (invasive squamous cell carcinoma) than mice exposed to UVR at 4:00 PM. We conclude that time of day of exposure to UVR is a contributing factor to its carcinogenicity in mice, and possibly in humans.circadian clock | cryptochrome | sunbathing | tanning salons S kin cancer is the most common form of cancer in the United States. With over 1.3 million new cases each year, it constitutes nearly 40% of all diagnosed cancers (1). Moreover, because of changes in lifestyle and the environment, the incidence of skin cancer is steadily increasing (2). The main causative agent of skin cancer is the UV component of sunlight. UV radiation (UVR) produces two major lesions in DNA, the cyclobutane pyrimidine dimer (CPD) and the (6-4) photoproduct [(6-4) PP], both of which are mutagenic and carcinogenic in animal model systems and are thought to be the primary cause of skin cancer in humans (3-7).In mice and humans, nucleotide excision repair is the sole repair system for removing CPDs and (6-4) PPs from DNA. As a consequence, humans with hereditary mutations in excision repair genes suffer from xeroderma pigmentosum, a syndrome characterized by a nearly 5,000-fold increase in skin cancer in sunlight-exposed areas of the afflicted individuals (8). Excision repair involves photoproduct removal by dual incisions bracketing the lesion, removal of the damage in the form of a 24-to 32-nt-long oligomer, filling in the resulting single-stranded gap, and sealing by ligase (9). The dual incision is carried out by six excision repair factors: RPA, xeroderma pigmentosum group A (XPA), XPC, TFIIH, XPG, and XPF-ERCC1 (10). Recently, in a study that analyzed liver and brain tissues from mice, it was found that XPA, a critical protein involved in damage recognition and a rate-limiting factor in excision repair, is controlled by the core molecular circadian clock (11, 12). As a consequence, excision repair activity exhibited circadian rhythmicity in these organs, increasing during the day to reach a maximum at 4-6:00 PM and decreasing during the night to a minimum at 4-6:00 AM.Here we analyzed the expression pattern of XPA and excision repair activity in mouse skin. We found that protein and repair activity exhibit a circadian rhythm similar to that found in the liver and brain. To determine whether this rhythmicity affected UV-induced skin cancer development we exposed a...
The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK-BMAL1 with a periodicity of~24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK-BMAL1 at the promoter and inhibits CLOCK-BMAL1-dependent transcription without dissociating the complex (''blocking''-type repression). PER alone has no effect on CLOCK-BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK-BMAL1 from the promoter (''displacement''-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle.
Purpose of review Our 24/7 society is dependent on shift work, despite mounting evidence for negative health outcomes from sleep displacement due to shift work. This paper reviews short- and long-term health consequences of sleep displacement and circadian misalignment due to shift work. Recent findings We focus on four broad health domains: metabolic health; risk of cancer; cardiovascular health; and mental health. Circadian misalignment affects these domains by inducing sleep deficiency, sympathovagal and hormonal imbalance, inflammation, impaired glucose metabolism, and dysregulated cell cycles. This leads to a range of medical conditions, including obesity, metabolic syndrome, type II diabetes, gastrointestinal dysfunction, compromised immune function, cardiovascular disease, excessive sleepiness, mood and social disorders, and increased cancer risk. Summary Interactions of biological disturbances with behavioral and societal factors shape the effects of shift work on health and well-being. Research is needed to better understand the underlying mechanisms and drive the development of countermeasures.
SignificanceShift workers, whose schedules are misaligned relative to their suprachiasmatic nuclei (SCN) circadian pacemaker, are at elevated risk of metabolic disorders. In a study of simulated day- versus night-shift work followed by a constant routine, we separated plasma-circulating metabolites according to whether their 24-h rhythms aligned with the central SCN pacemaker or instead reflected externally imposed behavioral schedules. We found that rhythms in many metabolites implicated in food metabolism dissociated from the SCN pacemaker rhythm, with the vast majority aligning with the preceding sleep/wake and feeding/fasting cycles. Our metabolomics study yields insight into the link between prolonged exposure to shift work and the spectrum of associated metabolic disorders by providing a window into peripheral oscillators and the biobehavioral factors that orchestrate them.
It is commonly thought that disruption of the circadian clock increases the cancer incidence in humans and mice. However, it was found that disruption of the clock by the Cryptochrome (Cry) mutation in mice did not increase cancer rate in the mutant mice even after exposing the animals to ionizing radiation. Therefore, in this study we tested the effect of the Cry mutation on carcinogenesis in a mouse strain prone to cancer because of a p53 mutation, with the expectation that clock disruption in this sensitized background would further increase cancer risk. Paradoxically, we find that the Cry mutation protects p53 mutant mice from the early onset of cancer and extends their median lifespan Ϸ50%, in part by sensitizing p53 mutant cells to apoptosis in response to genotoxic stress. These results suggest alternative therapeutic approaches in management of cancers associated with a p53 mutation.apoptosis ͉ circadian clock ͉ DNA repair
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.