Transcriptional co-activator with PSD-95/Dlg-A/ZO-1 (PDZ)-binding motif (TAZ) regulates in cell proliferation and differentiation. In mesenchymal stem cells it promotes osteogenesis and myogenesis, and suppresses adipogenesis. TAZ activators are expected to prevent osteoporosis, obesity and muscle atrophy. TAZ activation induces epithelial-mesenchymal transition, confers stemness to cancer cells and leads to poor clinical prognosis in cancer patients. In this point of view, TAZ inhibitors should contribute to cancer therapy. Thus, TAZ attracts attention as a two-faced drug target. We screened for TAZ modulators by using human lung cancer A549 cells expressing the fluorescent reporter. Through this assay, we obtained TAZ activator candidates. We unexpectedly found that ethacridine, a widely used antiseptic and abortifacient, enhances the interaction of TAZ and protein phosphatases and increases unphosphorylated and nuclear TAZ. Ethacridine inhibits adipogenesis in mesenchymal C3H10T1/2 cells through the activation of TAZ. This finding suggests that ethacridine is a bona fide TAZ activator and supports that our assay is useful to discover TAZ activators.
Transcriptional co‐activator with PDZ‐binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor‐suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial–mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP‐fused TAZ (GFP‐TAZ), monitored the subcellular localization of GFP‐TAZ, and selected 33 compounds that shifted GFP‐TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ‐mediated enhancement of TEAD‐responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP‐TAZ‐based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.