The present study deals with the two dimensional steady laminar forced MHD Hiemenz flow past a flat plate in a porous medium. The effects of thermal radiation and partial slips on the flow field have been investigated under the variable wall temperature condition of the plate. The governing equations have been transformed into a set of coupled non-linear ordinary differential equations (ODEs) by using suitable similarity transformations. These equations have been solved analytically by using homotopy analysis method (HAM). The effects of Prandtl number, suction/blowing parameter, permeability parameter, velocity slip parameter, radiation parameter, magnetic parameter, wall temperature exponent and thermal slip on velocity and temperature profiles have also been studied graphically. Our results have been validated with the help of results that have already been published.
This article investigates the boundary layer flow and heat transfer of an electrically conducting Casson fluid over a stretching wedge by considering the effects of suction/injection, velocity and thermal slips and thermal radiation. By applying the appropriate similarity transformations,the governing partial differential equations are transformed to highly non-linear ordinary differential equations. These resulting similarity equations are then solved by a new analytic method namely DTM-BF, based on differential transformation method (DTM) and base function (BF). A comparativestudy of the present numerical results has been made with the already published results available in the literature. The effects of various governing parameters on the flow and heat transfer characteristics have been discussed graphically.
The present paper deals with the boundary layer flow and heat transfer of an electrically conducting magnetohydrodynamic viscous fluid over a radially stretching power-law sheet with suction/injection within a porous medium by considering the effects of momentum and thermal slips and thermal radiation. The governing non-linear partial boundary layer differential equations are reduced to a system of coupled non-linear ordinary differential equations (ODEs) with the aid of appropriate similarity transformations. These transformed ODEs are then solved by employing a semi-analytic technique known as differential transformation method (DTM) in combination with Pade approximation. The numerical values of skin friction and local Nusselt number are tabulated and validated by comparing them with the corresponding values available in the literature. Our results have been found in precise agreement with the results published earlier. The effects of different governing parameters on velocity and temperature distributions are analyzed graphically. It has been found that with an increase in the velocity slip parameter the fluid velocity decreases whereas the temperature of the fluid increases. Also, the fluid temperature gets enhanced with an increase in the radiation parameter, but it decreases with an increase in thermal slip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.