A series of novel heteroditopic hexahomotrioxacalix[3]arene triamide receptors capable of binding an anion and cation simultaneously in a cooperative fashion has been prepared. The lower rim functionalized cone-hexahomotrioxacalix[3]arene derivatives cone-5a-5d bearing three amide groups were synthesized from cone-3 by a stepwise reaction. The crystal structures of 5c and 5d and (1)H NMR studies in nonpolar solvents strongly indicate that a number of interesting intramolecular hydrogen bonding interactions exist in these receptors. The binding abilities of these compounds towards n-butylammonium chloride and bromide salts have been investigated using (1)H NMR titration experiments in CDCl(3) solvent. Owing to the 'flattened cone' conformations and intramolecular hydrogen bonding involving the amide NH and neighbouring O atoms in cone-5a-5d, the affinities toward n-Bu(4)NX (X = Cl(-) and Br(-)) were weakened. However, it should be noted that triamides cone-5a-5d show a single selectivity for halide anions in the presence of n-BuNH(3)(+) through intermolecular hydrogen bonding with the amide NH hydrogen atoms in the receptors in CDCl(3) solution. Association constants were calculated from the chemical shift changes of the amide protons.
Novel ditopic receptors of tetraamide derivatives possessing four 2-pyridyl groups derived from thiacalix[4]arene in cone- and 1,3-alternate conformation were prepared. The structure of one of the tetraamide derivatives was confirmed by a single crystal X-ray analysis. The tetrathiacalix[4]arene tetraamides show strong intramolecular hydrogen bonding. The binding behaviour towards Ag+ and halides has been investigated by 1H NMR titration experiments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.