International audienceWe expand the item response theory to study the case of "cheating students" for a set of exams, trying to detect them by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning. In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number of sets of training data. Nevertheless, the greedy algorithm that we employed in the present study exhibits good performance with a few number of training data. The key point is the sparseness of the interactions in our problem in the context of the Boltzmann machine learning: the existence of cheating students is expected to be very rare (possibly even in real world). We compare a standard approach to infer the sparse interactions in the Boltzmann machine learning to our greedy algorithm and we find the latter to be superior in several aspects
We consider a class of two-degree-of-freedom Hamiltonian systems with saddlecenters connected by heteroclinic orbits and discuss some relationships between the existence of transverse heteroclinic orbits and nonintegrability. By the Lyapunov center theorem there is a family of periodic orbits near each of the saddle-centers, and the Hessian matrices of the Hamiltonian at the two saddle-centers are assumed to have the same number of positive eigenvalues. We show that if the associated Jacobian matrices have the same pair of purely imaginary eigenvalues, then the stable and unstable manifolds of the periodic orbits intersect transversely on the same Hamiltonian energy surface when sufficient conditions obtained in previous work for real-meromorphic nonintegrability of the Hamiltonian systems hold; if not, then these manifolds intersect transversely on the same energy surface, have quadratic tangencies or do not intersect whether the sufficient conditions hold or not. Our theory is illustrated for a system with quartic single-well potential and some numerical results are given to support the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.