We estimated the changes in seismic velocity in the southern Tohoku district of Japan during the six‐month period centered on the 11 March 2011 Tohoku‐oki earthquake, using scattered waves retrieved by autocorrelation of ambient seismic noise. The estimated velocity decrease after the earthquake, and after two large aftershocks in the study area, was as great as 1.5% in the area nearest to the mainshock. The velocity changes displayed gradual healing. The spatial distribution of the velocity change showed a correlation with both the changes in static strain, derived from GPS records, and the peak particle velocity experienced during the three earthquakes, derived from strong‐motion records. Therefore, our results show that velocity changes possibly contain information from deep in the crust bearing on coseismic stress release, in addition to shallower effects due to strong ground motion.
Crosswell reflection method is a high-resolution seismic imaging method that uses recordings between boreholes. The need for downhole sources is a restrictive factor in its application, for example, to time-lapse surveys. An alternative is to use surface sources in combination with seismic interferometry. Seismic interferometry ͑SI͒ could retrieve the reflection response at one of the boreholes as if from a source inside the other borehole. We investigate the applicability of SI for the retrieval of the reflection response between two boreholes using numerically modeled field data. We compare two SI approaches -crosscorrelation ͑CC͒ and multidimensional deconvolution ͑MDD͒. SI by MDD is less sensitive to underillumination from the source distribution, but requires inversion of the recordings at one of the receiver arrays from all the available sources. We find that the inversion problem is illposed, and propose to stabilize it using singular-value decomposition. The results show that the reflections from deep boundaries are retrieved very well using both the CC and MDD methods. Furthermore, the MDD results exhibit more realistic amplitudes than those from the CC method for downgoing reflections from shallow boundaries. We find that the results retrieved from the application of both methods to field data agree well with crosswell seismic-reflection data using borehole sources and with the logged P-wave velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.