This study had two objectives: (a) revealing the difference in finger segments between the conventional and finger models during aimed throwing and (b) examining the central nervous system's timing control between the wrist torque and finger torque. Participants were seven baseball players. Finger kinetics was calculated by an inverse dynamics method. In the conventional model, wrist flexion torque was smaller than that in the finger model because of the error in ball position approximation. The maximal correlation coefficient between the wrist torque and finger torque was high (r = .85 ± .10), and the time lag at maximal correlation coefficient was small (t = 0.36 ± 3.02 ms). The small timing delay between the wrist torque and finger torque greatly influenced ball trajectory. We conclude that, to stabilize release timing, the central nervous system synchronized the wrist torque and finger torque by feed-forward adjustments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.