NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or DisoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.
Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.
A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce the maintainability of software, several code clone detection techniques and lools have been proposed. This paper proposes a new clone detection technique, which consists of the transformation of input source text and a token•by•token comparison. For its implementation with several useful optimization techniques, we have developed a tool, named CCFlnder, which extracts code clones in C, C++, Java, COBOL, and other source flies. As well, metrics for the code clones have been developed. In order to evaluate the usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK, FreeBSD, NetBSD, Linux, and many other systems, As a result, CCFinder has effectively found clones and the metrics have been able to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone detection techniques.
Insects depend solely upon innate immune responses to survive infection. These responses include the activation of extracellular protease cascades, leading to melanization and clotting, and intracellular signal transduction pathways inducing antimicrobial peptide gene expression. In Drosophila, the IMD pathway is required for antimicrobial gene expression in response to gram-negative bacteria. The exact molecular component(s) from these bacteria that activate the IMD pathway remain controversial. We found that highly purified LPS did not stimulate the IMD pathway. However, lipid A, the active portion of LPS in mammals, activated melanization in the silkworm Bombyx morii. On the other hand, the IMD pathway was remarkably sensitive to polymeric and monomeric gram-negative peptidoglycan. Recognition of peptidoglycan required the stem-peptide sequence specific to gram-negative peptidoglycan and the receptor PGRP-LC. Recognition of monomeric and polymeric peptidoglycan required different PGRP-LC splice isoforms, while lipid A recognition required an unidentified soluble factor in the hemolymph of Bombyx morii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.