Tuning of localized surface plasmon resonance (LSPR) of metal nanostructures has attracted a great deal of interest, and the controlled syntheses of them have been extensively studied for fine tuning of their LSPR. In this paper, we report widely tunable LSPR from visible to near-infrared of hollow silver nanoshells synthesized by reduction of silver thiocyanate. The silver nanoshell exhibits size- and thickness-dependent LSPR for symmetric dipole mode from visible to near-infrared regions, while the antisymmetric dipole resonance is not changed. By combining characterization of the nanoshells by transmission electron microscopy and theoretical simulation based on discrete dipole approximation, we reveal that the LSPRs are controlled by the size and shell thickness of the nanoshells and also that dimples on the shell surfaces would significantly affect the LSPRs of symmetric dipole, and quadrupole mode for larger nanoshells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.