a b s t r a c tIn this paper, the concept of hyper-elasticity in the micropolar continuum theory is investigated. The restrictions on the fourth-order elasticity tensors are investigated. Using the representation theorems, a general form of constitutive equations for micropolar hyper-elastic isotropic materials is presented. As some special cases, generalizations of the neo-Hookean and Mooney-Rivlin type materials to the micropolar continuum theory are presented. The generalized constitutive equations reduce to those of the microplar linear elasticity theory when the deformations are infinitesimal. Also, Updated Lagrangian finite element formulations for the micropolar hyper-elastic materials are presented. Considering two planar examples, it is shown that an increase in the micropolar parameter results in the reduction of the deformation of the bodies. Also, it is shown that for a specimen with very small dimensions, e.g. in the micron level, the micropolar effects are more sensible. Furthermore, it is shown that the influence of the micropolar parameters is dependent not only on the size of the body, but also to its geometry and loading conditions. For the problems in which the deformation is very close to a homogeneous state, the micropolar effects are negligible.
A microscale nonlinear Bernoulli-Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton's principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.
In this paper, the concept of energy pairs in the micropolar continuum is introduced. A brief review of the micropolar continuum theory is presented for using in the subsequent derivations. A mathematical Lagrangian strain and a wryness tensor for the micropolar continuum are introduced. Using the first law of thermodynamics and for isothermal processes, the power of deformation is obtained and the energy pairs in the Eulerian and Lagrangian descriptions are defined. Also, the micropolar stress and couple stress tensors which are energy pairs to the micropolar Lagrangian strain and wryness measures are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.