For assessment of existing bridges, load rating is usually performed to assess the capacity against vehicular loading. Codified load rating can be conservative if the rating is not coupled with the field data or if simplifications are incorporated into assessment. Recent changes made to the Australian Bridge assessment code (AS 5100.7) distinguish the difference between design and assessment requirements, and include addition of structural health monitoring for bridge assessment. However, very limited guidelines are provided regarding higher order assessment levels, where more refined approaches are required to optimize the accuracy of the assessment procedure. This article proposes a multi-tier assessment procedure for capacity estimation of existing bridges using a combination of structural health monitoring techniques, advanced nonlinear analysis, and probabilistic approaches to effectively address the safety issues on aging bridges. Assessment of a Box Girder bridge was carried out according to the proposed multi-tier assessment, using data obtained from modal and destructive testing. Results of analysis at different assessment tiers showed that both loadcarrying capacity and safety index of the bridge vary significantly if current bridge information is used instead of asdesigned bridge information. Findings emerged from this study demonstrated that accuracy of bridge assessment is significantly improved when structural health monitoring techniques along with reliability approaches and nonlinear finite element analysis are incorporated, which will have important implications that are relevant to both practitioners and asset managers.
Load assessment of existing bridges in Australia is evaluated mainly using beam line model and the grillage analogy to examine the structural integrity of bridge components due to live loadings. With the majority of existing bridge networks designed for superseded design vehicular loading, the necessity to utilise more rigorous analysis methods to assess the load effects of bridges is indispensable. In this paper, various vehicular loading cases on a grillage model of a box girder bridge and its equivalent finite element model (FE) are considered, and their applicability for bridge assessment using structural health monitoring (SHM) as defined in the new revision of AS 5100.7 is studied. Based on numerical analyses, it was observed that component-level load effects in the two models have notable differences, irrespective of vehicle speed, position and loading. However, when global-level load responses are compared, the discrepancy in analysis outputs drops dramatically. The modelling ratios developed in this paper are practical and will be applicable with any modelling techniques for bridge assessment under vehicular loading on both a global and component-response basis. It was also observed that FE is more efficient in terms of model updating and damage simulation, and hence more appropriate for implementation of SHM techniques. The proposed flowchart suggested for heavy load assessment incorporates detailed and simple modelling approaches aligned with experimental data obtained by SHM techniques, which can be used for periodic and long term monitoring of bridges. It can enhance the proper determination of bridge condition states, as any conservative estimation of bridge capacity may result in unnecessary load limitations.
Evaluating the performance of beam-like structures in terms of their current boundary conditions, stiffness and modal properties can be challenging as the structures behave differently from their designed conditions due to aging. The purpose of the current study is to determine the flexural rigidity of beam-like structures when their support conditions are not fully understood. A novel optimization scheme is proposed for estimation of the flexural stiffness and the capacity of the beam-like structures under moving loads. The proposed method is applied to various profiles of the beams made of different materials with unknown boundary conditions, and the effects of damage, excitation and optimization algorithm are rigorously investigated. The results of the numerical and experimental studies showed that the proposed substructural bending rigidity identification (SBI) method can correctly assess the in-service flexural stiffness, fixity of the boundary condition and the load-carrying capacity. This technique can be considered as a cost-effective method for periodic monitoring, load rating and model updating of the beam-like structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.