The entomogenous fungus Nomuraea rileyi reportedly secretes a proteinaceous substance inhibiting larval molt and metamorphosis in the silkworm Bombyx mori. We studied the possibility that N. rileyi controls B. mori development by inactivating hemolymph molting hormone, ecdysteroids. Incubation of ecdysone (E) and 20-hydroxyecdysone (20E) in fungal-conditioned medium resulted in their rapid modification into products with longer retention times in reverse-phase HPLC. Each modified product from E and 20E was purified by HPLC, and identified by NMR as 22-dehydroecdysone and 22-dehydro-20-hydroxyecdysone. Some other ecdysteroids with a hydroxyl group at position C22 were also modified. Injection of the fungal-conditioned medium into Bombyx mori larvae in the mid-4th instar inhibited larval molt but induced precocious pupal metamorphosis, and its injection into 5th instar larvae just after gut purge blocked pupal metamorphosis. In hemolymph of injected larvae, E and 20E disappeared and, in turn, 22-dehydroecdysone and 22-dehydro-20-hydroxyecdysone accumulated. These results indicate that N. rileyi secretes a specific enzyme that oxidizes the hydroxyl group at position C22 of hemolymph ecdysteroids and prevents molting in B. mori larvae. Abbreviations used: E = ecdysone; EGT = ecdysteroid UDP-glucosyltransferase; ME = modified ecdysone; M20E = modified 20-hydroxyecdysone; NPV = nucleopolyhedrovirus; 20E = 20-hydroxyecdysone.
Ribosomal DNA (rDNA) containing small subunit (SSU) rDNA and both flanking regions in the entomopathogenic microsporidian Nosema bombycis NIS 001 was amplified from genomic DNA with a primer set based on the sequence of an inverse polymerase chain reaction (PCR)-derived fragment. In this fragment, SSU rDNA was divided by a 618-bp insert at nt 599, and 5S rDNA was located downstream of the SSU rDNA, fragmented by 284-bp intergenic spacer. In addition, the 48-bp 3'-end of large subunit (LSU) rDNA was located 118 bp upstream of the fragmented SSU rDNA. In the amplicon, the region upstream of the LSU rDNA was a homologue of the C-terminal CHARLIE8 transposon-like element of human GTF2IRD2. In this organism, another fragmented SSU rDNA, which was divided by a 231-bp insert at nt 50, was also detected. Both the intact (insertless) and fragmented SSU rDNAs clustered with LSU rDNA and 5S rDNA and the intergenic sequences between SSU rDNA and 5S rDNA were divergent in an organism. Reverse transcription (RT)-PCR assay indicated that not only the intact SSU rDNA but also the fragmened SSU rDNA were transcribed in N. bombycis.
Non-occluded viruses (NOVs) of Bombyx mori nucleopolyhedrovirus (BmNPV) are poorly infectious to silkworm larvae when administered by peroral inoculation, although they are highly infectious when injected into the insect haemocoel. In the present study, it is demonstrated that NOVs of BmNPV became highly infectious even through peroral inoculation when administered with spindles (proteinaceous structures) of Anomala cuprea entomopoxvirus (AcEPV). Marked enhancement of peroral infectivity of NOVs by AcEPV spindles (nearly 1000-fold higher in the strongest case) was observed in all growth stages of silkworm larvae tested (2nd to 5th instar). Similarly, peroral infectivity of polyhedrin-negative recombinants of BmNPV, which do not produce polyhedra, was also enhanced remarkably by AcEPV spindles. In contrast, spheroids (proteinaceous structures containing AcEPV virions) did not enhance the peroral infectivity of either NOVs or the recombinant BmNPV in silkworm larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.