The propagation properties of leaky surface acoustic waves (LSAWs) and longitudinal-type LSAWs (LLSAWs) on a LiNbO3 (LN) or LiTaO3 (LT) thin plate bonded to an AT-cut quartz or c-plane sapphire (c-Al2O3) substrate with a high phase velocity were investigated. It was theoretically revealed that when the LN or LT thin-plate thickness is less than one wavelength, the particle displacement of LLSAWs was concentrated in the thin plate and the electromechanical coupling factor (K2) was increased to two to three times that in the single substrate. Furthermore, for 36° Y-cut X-propagating LT/c-Al2O3 with an LT thin-plate thickness of 0.35 λ and X-cut 36° Y-propagating LN/c-Al2O3 with an LN thin-plate thickness of 0.19 λ, the values of K2 for an LSAW and an LLSAW were experimentally found to increase from 5.6 and 10.4% in the single substrate to 11.5 and 19.7% in the thin-plate bonded structure, respectively.
The propagation properties and resonance characteristics of leaky surface acoustic waves (LSAWs) and longitudinal-type LSAWs (LLSAWs) on a LiTaO3 (LT) thin plate bonded to an AT-cut quartz substrate were investigated experimentally. For the LSAWs and LLSAWs, the bonded structures of 36°Y-cut X-propagating LT (36°YX-LT)/AT-cut 90°X-propagating quartz (AT90°X-quartz) and X-cut 31°Y-propagating LT (X31°Y-LT)/AT-cut 45°X-propagating quartz (AT45°X-quartz) were fabricated, respectively. For the LSAW on 36°YX-LT/AT90°X-quartz, the electromechanical coupling factor (K2) of 11.1% was obtained at an LT thin-plate thickness of 0.25 wavelength, whereas K2 for a single LT substrate was measured to be 5.7%. For the LLSAW on X31°Y-LT/AT45°X-quartz, K2 increased from 2.8% for the single LT substrate to 7.2% at an LT thin-plate thickness of 0.14 wavelength. Furthermore, K2 of approximately 12% and the temperature coefficient of frequency (TCF) of 0 ppm/°C were theoretically obtained simultaneously for the LSAW on 36°YX-LT/AT-cut 90°X-quartz at a certain thin-plate thickness.
A waveguide-type acoustooptic modulator (AOM) driven by a surface acoustic wave (SAW) in a tapered crossed-channel waveguide on a 128°-rotated Y-cut LiNbO3 substrate has been proposed for an optical wavelength of 1.55 µm. In this study, to clarify the conditions for a higher diffraction efficiency and a lower driving power, the diffraction properties of the waveguide-type AOM were measured and simulated. First, an AOM with an AO interaction region length of 3 mm was fabricated and the diffraction efficiency of 65% was obtained. Next, the measured values of the SAW power required for 100% diffraction (P
100) for the driving frequencies of 125 MHz and 200 MHz were found to be in agreement with the calculated P
100, which shows that there is an optimum driving frequency. Furthermore, optical frequency domain ranging using a frequency-shifted-feedback fiber laser with the waveguide-type AOM was demonstrated. Finally, the diffraction properties of the waveguide-type AOM are simulated using a beam-propagation method (BPM) and compared with the experimental results.
To obtain a bonded structure with low attenuation for longitudinal leaky surface acoustic waves (LLSAWs), the propagation and resonance properties on a LiTaO3 (LT) or LiNbO3 thin plate bonded to an X-cut quartz substrate were theoretically analyzed. The attenuation of an X-cut 31°Y-propagating LT (X31°Y-LT)/X32°Y-quartz (X32°Y-Q) was calculated to be 0.0005 dB/λ at the normalized LT thin plate thickness h/λ = 0.062 (λ: wavelength) and was lower than that on an X31°Y-LT/AT45°X-Q. Using a finite element method, for the X31°Y-LT/X32°Y-Q, the admittance ratio and Q factor were improved to 120 dB and 53 400 from 62 dB and 1000 for the X31°Y-LT/AT45°X-Q, respectively. Then, the propagation and resonance properties were measured. For the X31°Y-LT/X32°Y-Q, the measured electromechanical coupling factor (K2) and Q factor increased to 5.6% and 280 from 1.8% and 32 for the single LT, respectively. The temperature coefficient of frequency of the LLSAW was measured to be −26.2 ppm °C−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.