Block-face imaging is a scanning electron microscopic technique which enables easier acquisition of serial ultrastructural images directly from the surface of resin-embedded biological samples with a similar quality to transmission electron micrographs. In the present study, we analyzed the three-dimensional architecture of podocytes using serial block-face imaging. It was previously believed that podocytes are divided into three kinds of subcellular compartment: cell body, primary process, and foot process, which are simply aligned in this order. When the reconstructed podocytes were viewed from their basal side, the foot processes were branched from a ridge-like prominence, which was formed on the basal surface of the primary process and was similar to the usual foot processes in structure. Moreover, from the cell body, the foot processes were also emerged via the ridge-like prominence, as found in the primary process. The ridge-like prominence anchored the cell body and primary process to the glomerular basement membrane, and connected the foot processes to the cell body and primary process. In conclusion, serial block-face imaging is a powerful tool for clear understanding the three-dimensional architecture of podocytes through its ability to reveal novel structures which were difficult to determine by conventional transmission and scanning electron microscopes alone.
The damage produced by focused ion beam (FIB) milling on a TEM sample of AlGaAs crystals has been studied. The damage observed on the sidewall of an AlGaAs transmission electron microscopy (TEM) sample was an amorphous layer. The thickness of the amorphous layer linearly increased with an increase in FIB accelerating voltage from 5 to 30 kV. The thickness of the amorphous layer of Al(x)Ga(1-x)As was constant at 3 nm and was independent of the Al concentration x when the accelerating voltage was below 5 kV. The thickness of the amorphous layer of Al(x)Ga(1-x)As decreased with an increase in Al concentration x when the accelerating voltage was above 5 kV. FIB milling at 5 kV effectively minimizes the thickness of the amorphous layer and also provides flat sidewalls on multilayer samples of Al(x)Ga(1-x)As that are prepared for TEM and scanning electron microscopy (SEM).
BaZrO 3 doped GdBa2Cu3O7−δ superconductor was prepared by pulsed layer deposition using a KrF excimer laser, which showed isotropic characteristics of critical current density, JC, for magnetic-field orientations, ∼4.0×109 A m−2 at 1.0 T. Microstructural and morphological characterization of resulting artificial pinning centers were conducted by transmission electron microscopy and electron tomography, which confirmed the presence of one-dimensional artificial pinning centers, BaZrO3 nanorods. Since there is noticeable anisotropy from GdBa2Cu3O7−δ superconductor without doping BaZrO3, the pinning observed for all magnetic-field orientations are due to the high density and high dispersion of these BaZrO3 nanorods with very wide angular distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.