Abstract:A vector vortex coronagraph (VVC) is one of promising means for imaging extremely faint objects around bright stars such as exoplanets. We present a design of an achromatic VVC, in which an axially-symmetric half-wave plate (AHP) is placed between crossed polarization filters (circular polarizer and analyzer). The circular polarizer and the analyzer are both composed of a polarizer and a quarter-wave plate (QWP). We demonstrate, via Jones calculus and Fourier analysis, that the achromatic stellar elimination can theoretically be realized by optimal polarization filters, even when chromatic AHP and QWPs are used. We carried out laboratory demonstrations of the designed VVC using a photonic-crystal AHP. As a result, we observed achromatic coronagraphic performance, a light suppression level of 7 × 10 −5 , over a wavelength from 543 nm to 633 nm.
The Vector Vortex Coronagraph (VVC) is one of the most attractive new-generation coronagraphs for ground-and space-based exoplanet imaging/characterization instruments, as recently demonstrated on sky at Palomar and in the laboratory at JPL, and Hokkaido University. Manufacturing technologies for devices covering wavelength ranges from the optical to the mid-infrared, have been maturing quickly. We will review the current status of technology developments supported by NASA in the USA (Jet Propulsion Laboratory-California Institute of Technology, University of Arizona, JDSU and BEAMCo), Europe (University of Liège, Observatoire de ParisMeudon, University of Uppsala) and Japan (Hokkaido University, and Photonics Lattice Inc.), using liquid crystal polymers, subwavelength gratings, and photonics crystals, respectively. We will then browse concrete perspectives for the use of the VVC on upcoming ground-based facilities with or without (extreme) adaptive optics, extremely large ground-based telescopes, and space-based internal coronagraphs.
Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex coronagraph (VVC) mask very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10 -8 -level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply the polarization-differential imaging (PDI) technique to the VVC, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply the angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode mitigates an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.