Recently, the concept of local allergic rhinitis (LAR) was established, namely rhinitis symptoms with local IgE production and negative serum antigen-specific IgE. However, the natural course of LAR development and the disease pathogenesis is poorly understood. This study investigated the pathophysiology of mice with allergic rhinitis that initially sensitized with ragweed pollen through the nasal route. Mice were nasally administrated ragweed pollen over consecutive days without prior systemic immunization of the allergen. Serial nasal sensitization of ragweed pollen induced an allergen-specific increase in sneezing, eosinophilic infiltration, and the production of local IgE by day 7, but serum antigen-specific IgE was not detected. Th2 cells accumulated in nose and cervical lymph nodes as early as day 3. These symptoms are characteristic of human LAR. Continual nasal exposure of ragweed pollen for 3 weeks resulted in the onset of classical AR with systemic atopy and adversely affected lung inflammation when the allergen was instilled into the lung. Fcer1a −/− mice were defective in sneezing but developed normal eosinophilic infiltration. Contrary, Rag2 −/− mice were defective in both sneezing and eosinophilic infiltration, suggesting that T cells play a central role in the pathogenesis of the disease. These observations demonstrate nasal allergen sensitization to non-atopic individuals can induce LAR. Because local Th2 cell accumulation is the first sign and Th2 cells have a central role in the disease, a T-cell-based approach may aid the diagnosis and treatment of LAR.
Thymic stromal lymphopoietin (TSLP) and IL-33 are epithelium-derived proallergic cytokines that contribute to allergic diseases. Although the involvement of TSLP in allergic rhinitis (AR) is suggested, the exact role of TSLP in AR is poorly understood. Furthermore, the relative contribution of TSLP and IL-33 in nasal allergic responses has not been described. In this study, we examined the roles of TSLP and IL-33 in AR by analyzing acute and chronic AR models. Acute AR mice were intraperitoneally immunized with ragweed, then intranasally challenged with ragweed pollen for four consecutive days. Chronic AR mice were nasally administrated ragweed pollen on consecutive days for 3 weeks. In both models, TSLP receptor (TSLPR)-deficient mice showed defective sneezing responses and reduced serum ragweed-specific IgE levels compared with wild-type (WT) mice. Analyses of bone-marrow chimeric mice demonstrated that hematopoietic cells were responsible for defective sneezing in TSLPR-deficient mice. In addition, FcεRI(+)-cell-specific TSLPR-deficient mice showed partial but significant reduction in sneezing responses. Of note, Th2 activation and nasal eosinophilia were comparable between WT and TSLPR-deficient mice. ST2- and IL-33-deficient mice showed defective Th2 activation and nasal eosinophilia to acute, but not chronic, ragweed exposure. TSLPR and ST2 double-deficient mice showed defective Th2 activation and nasal eosinophilia even after chronic ragweed exposure. These results demonstrate that TSLPR signaling is critical for the early phase response of AR by controlling the IgE-mast-cell/basophil pathway. The IL-33/ST2 pathway is central to nasal Th2 activation during acute allergen exposure, but both TSLPR and ST2 contribute to Th2 responses in chronically allergen-exposed mice.
Antigen-specific nasal activation of CD4 T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might explain currently unknown mechanisms in allergic(-like) disorders.
Both Th2 cells and group 2 innate lymphoid cells (ILC2s) contribute to allergic diseases. However, their exact role and relationship in nasal allergic disorders are unclear. In this study, we investigated the cooperation of Th2 cells and ILC2s in a mouse model of nasal allergic disorder. To differentially activate Th2 cells and/or ILC2s in nasal mucosa, mice were intra-nasally administered ovalbumin (OVA) antigen, papain, an ILC2-activator, or both for 2 weeks. Epithelial thickness and number of eosinophils in the nasal mucosa were evaluated at 24 h after the final challenge. Intra-nasal administration of OVA and papain preferentially activated Th2 cells and ILC2s, respectively, in the nose. Both OVA and papain increased the nasal epithelial thickness and number of eosinophils, and their coadministration significantly enhanced the symptoms. Although T-/B-cell-deficient mice showed severely decreased nasal symptoms induced by OVA or OVA-plus-papain, the mice still showed slight papain-induced nasal symptoms. In ILC2-deficient mice, OVA-plus-papain-induced nasal symptoms were suppressed to the same level as OVA-alone. Similarly, IL-33- and ST2-deficient mice showed decreased OVA-plus-papain-induced nasal symptoms. IL-5 induced eosinophilia only, but IL-13 contributed to both nasal epithelial thickening and eosinophilia induced by OVA-plus-papain. Dexamethasone ameliorated OVA-alone-induced nasal epithelial thickening. However, OVA-plus-papain-induced nasal epithelial thickening was only partially controlled by dexamethasone. These results demonstrate that IL-33/ST2-pathway-mediated ILC2 activation exacerbated Th2-cell-induced nasal inflammation by producing IL-13. Although Th2-cell-alone-induced nasal inflammation was controlled by corticosteroid treatment, the activation of ILC2s conferred treatment resistance. Therefore, ILC2s and their activators could be therapeutic targets for treatment-refractory nasal allergic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.