Data from 19 Japanese Black multiparous cows were collected to clarify the relationships among immunoglobulin (Ig) G, IgA, β-carotene, vitamin A and α-tocopherol contents in colostrum of cows in order to evaluate the role of fat-soluble vitamins on colostral IgG and IgA production. Mean colostral IgG was 141 mg/mL, ranging from 65 to 208 mg/mL, whereas mean colostral IgA was 8.7 mg/mL, ranging from 1.0 to 34.6 mg/mL. Colostral IgG increased with aging in multiparous cows. There were positive correlations between colostral IgG and colostral vitamin A or colostral α-tocopherol in cows, and the higher adjusted R(2) was obtained in the prediction model of colostral IgG from age and colostral vitamin A. Colostral vitamin A was positively correlated with colostral β-carotene or colostral α-tocopherol in cows, but there were no relationships between colostral IgA and colostral IgG or colostral fat-soluble vitamins. These results indicate that fat-soluble vitamin contents in colostrum of cows may change in similar patterns and high colostral vitamin A is related with high colostral IgG.
This study was conducted to clarify the relationships among immunoglobulin (Ig)M, IgG, IgA, β-carotene, vitamin A and α-tocopherol contents in colostrum of 24 Japanese Black multiparous cows in order to evaluate the role of IgM on colostral IgG and IgA production. Compared with colostral IgG, colostral IgM and IgA were very low but varied widely. There was positive correlation between colostral IgM and IgG, but colostral IgM was not related with colostral IgA. There was no relationship between colostral IgM and age of cows, although colostral IgG was increased with aging. There were positive correlations among colostral β-carotene, vitamin A and α-tocopherol and these vitamins were positively correlated with colostral IgM and IgG. These results indicate that fat-soluble vitamins may affect colostral IgG and IgM in cows and colostral IgG increases with the increase of colostral IgM.
Brown/beige adipocytes dissipate energy as heat. We previously showed that brown/beige adipocytes are present in white adipose tissue (WAT) of fattening cattle. The present study examined the effect of vitamin A restriction on mRNA expression of brown/beige adipocyte-related genes. In Japan, fattening cattle are conventionally fed a vitamin A-restricted diet to improve beef marbling. Twelve Japanese Black steers aged 10 months were fed control feed (n=6) or vitamin A-restricted feed (n=6) for 20 months. Subcutaneous WAT (scWAT) and mesenteric WAT (mesWAT) were collected, and mRNA expression levels of molecules related to function of brown/beige adipocytes (Ucp1, Cidea, Dio2, Cox7a and Cox8b) as well as transcriptional regulators related to brown/beige adipogenesis (Zfp516, Nfia, Prdm16, and Pgc-1α) were evaluated. The vitamin A restriction significantly increased or tended to increase expression levels of Cidea and Pgc-1α in scWAT, and Cidea, Dio2, and Nfia in mesWAT. Previous studies revealed that the bone morphogenetic protein (BMP) pathway was responsible for commitment of mesenchymal stem cells to brown/beige adipocyte-lineage cells. The vitamin A restriction increased expression of Bmp7 and some Bmp receptors in WAT. The interrelationship between gene expression levels indicated that expression levels of Nfia, Prdm16, and Pgc-1α were closely related to those of genes related to function of brown/beige adipocytes in scWAT. Also, expression levels of Nfia, Prdm16, and Pgc-1α were highly correlated with those of Alk3 in scWAT. In summary, the present results suggest that the vitamin A restriction increases the number or activity of brown/beige adipocytes through regulatory expression of transcriptional regulators to induce brown/beige adipogenesis especially in scWAT of fattening cattle, which may be governed by the Bmp pathway.
Uncoupling protein 1 (UCP1) is responsible for non‐shivering thermogenesis, with restricted expression in brown/beige adipocytes in humans and rodents. We have previously shown an unexpected expression of UCP1 in bovine skeletal muscles. This study evaluated factors affecting Ucp1 gene expression in cultured bovine myogenic cells. Myosatellite cells, which were isolated from the bovine musculus longissimus cervicis, were induced to differentiate into myotubes in the presence of 2% horse serum. Previous studies using murine brown/beige adipocytes revealed that Ucp1 expression levels are directly increased by forskolin and all‐trans retinoic acid (RA). The transforming growth factor‐β (TGF‐β)/activin pathway negatively regulated Ucp1 expression, whereas activation of the bone morphogenetic protein (BMP) pathway indirectly increases Ucp1 expression through the stimulation of brown/beige adipogenesis. Neither forskolin nor RA significantly affected Ucp1 mRNA levels in bovine myogenic cells. A‐83‐01, an inhibitor of the TGF‐β/activin pathway, stimulated myogenesis in these cells. A‐83‐01 significantly increased the expression of some brown fat signature genes such as Pgc‐1α, Cox7a1, and Dio2, with a quantitative but not significant increase in the expression of Ucp1. Treatment with LDN‐193189, an inhibitor of the BMP pathway, did not affect the differentiation of bovine myosatellite cells. Rather, LDN‐193189 increased Ucp1 mRNA levels without modulating the levels of other brown/beige adipocyte‐related genes. The current results indicate that the regulation of Ucp1 expression in bovine myogenic cells is distinct from that in murine brown/beige adipocytes, which has been more intensely characterized. Significance of the study We previously reported unexpected expression of Ucp1 in bovine muscle tissues; Ucp1 expression has been known to be detected predominantly in brown/beige adipocytes. This study examined regulatory expression of bovine Ucp1 in myogenic cells. Consistent with the changes in expression levels of brown/beige adipocyte‐selective genes, Ucp1 expression tended to be increased by inhibition of endogenous TGF‐β activity. In contrast, inhibition of endogenous BMP significantly increased Ucp1 expression without affecting brown/beige adipocyte‐selective gene expression. The current results indicate that regulatory expression of Ucp1 in bovine myogenic cells is distinct from that in murine brown/beige adipocytes that is more intensely characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.