The calcium-binding proteins S100A8 and S100A9 can dimerize to form calprotectin, the release of which during tissue damage has been implicated in inflammation and metastasis. However, receptor(s) mediating the physiologic and pathophysiologic effects of this damage-associated "danger signal" are uncertain. In this study, searching for candidate calprotectin receptors by affinity isolation-mass spectrometry, we identified the cell surface glycoprotein EMMPRIN/BASIGIN (CD147/BSG). EMMPRIN specifically bound to S100A9 but not S100A8. Induction of cytokines and matrix metalloproteases (MMP) by S100A9 was markedly downregulated in melanoma cells by attenuation of EMMPRIN. We found that EMMPRIN signaling used the TNF receptorassociated factor TRAF2 distinct from the known S100-binding signaling pathway mediated by RAGE (AGER). S100A9 strongly promoted migration when EMMPRIN was highly expressed, independent of RAGE, whereas EMMPRIN blockade suppressed migration by S100A9. Immunohistologic analysis of melanomas revealed that EMMPRIN was expressed at both the invasive edge of lesions and the adjacent epidermis, where S100A9 was also strongly expressed. In epidermal-specific transgenic mice, tail vein-injected melanoma accumulated in skin expressing S100A9 but not S100A8. Together, our results establish EMMPRIN as a receptor for S100A9 and suggest the therapeutic use in targeting S100A9-EMMPRIN interactions. Cancer Res; 73(1); 172-83. Ó2012 AACR.
Skeletal muscle differentiation entails organized sequential events, including cell cycle arrest of proliferating myoblast cells and cell fusion, which lead to the formation of multinucleated myotubes. This process involves both transcriptional and post-transcriptional regulation of the gene expression of myogenic proteins, as well as cell-cycle related proteins. RNA-binding proteins bind to specific sequences of target RNA and regulate gene expression in a post-transcriptional manner. However, few tissue-specific RNA binding proteins have been identified. Herein, we report that the RNA binding proteins Rbm24 and Rbm38 were found to be preferentially expressed in muscle during differentiation in vitro. Further, knockdown of either by RNA interference suppressed cell-cycle arrest and delayed myogenic differentiation in C2C12 cells. In contrast, over-expression of Rbm24 or Rbm38 induced cell cycle arrest, and then had a positive effect on myogenic differentiation. Immunoprecipitation-RT-PCR analysis using tagged Rbm proteins indicated that Rbm38 binds to the p21 transcript in vivo. Consistent with this, differentiation of Rbm38 knockdown cells was rescued by over-expression of p21. Together, our results suggest that Rbm38 plays a crucial role in cell cycle arrest and myogenic differentiation via its binding to p21.
It was concluded that the MFT offers reliable and valid methods for assessing for upper-limb functional disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.