To promote the functional restoration of the nervous system following injury, it is necessary to provide optimal extracellular signals that can induce neuronal regenerative activities, particularly neurite formation. This study aimed to examine the regulation of neuritogenesis by temperature-controlled repeated thermal stimulation (TRTS) in rat PC12 pheochromocytoma cells, which can be induced by neurotrophic factors to differentiate into neuron-like cells with elongated neurites. A heating plate was used to apply thermal stimulation, and the correlation of culture medium temperature with varying surface temperature of the heating plate was monitored. Plated PC12 cells were exposed to TRTS at two different temperatures via heating plate (preset surface temperature of the heating plate, 39.5°C or 42°C) in growth or differentiating medium for up to 18 h per day. We then measured the extent of growth, neuritogenesis, or acetylcholine esterase (AChE) activity (a neuronal marker). To analyze the mechanisms underlying the effects of TRTS on these cells, we examined changes in intracellular signaling using the following: tropomyosin-related kinase A inhibitor GW441756; p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580; and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126 with its inactive analog, U0124, as a control. While a TRTS of 39.5°C did not decrease the growth rate of cells in the cell growth assay, it did increase the number of neurite-bearing PC12 cells and AChE activity without the addition of other neuritogenesis inducers. Furthermore, U0126, and SB203580, but not U0124 and GW441756, considerably inhibited TRTS-induced neuritogenesis. These results suggest that TRTS can induce neuritogenesis and that participation of both the ERK1/2 and p38 MAPK signaling pathways is required for TRTS-dependent neuritogenesis in PC12 cells. Thus, TRTS may be an effective technique for regenerative neuromedicine.
In this study, we investigated the effect of dorsomorphin, a selective inhibitor of bone morphogenetic protein (BMP) signaling, on rat PC12 pheochromocytoma cell differentiation. PC12 cells can be induced to differentiate into neuron-like cells possessing elongated neurites by nerve growth factor, BMP2, and other inducers. Cells were incubated with BMP2 and ⁄ or dorsomorphin, and the extent of neurite outgrowth was evaluated. Unexpectedly, BMP2-mediated neuritogenesis was not inhibited by co-treatment with dorsomorphin. We also found that treatment with dorsomorphin alone, but not another BMP signaling inhibitor, LDN-193189, induced neurite outgrowth in PC12 cells. To further understand the mechanism of action of dorsomorphin, the effects of this drug on intracellular signaling were investigated using the following signaling inhibitors: the ERK kinase (MEK) inhibitor U0126; the tropomyosinrelated kinase A inhibitor GW441756; and the protein kinase A (PKA) inhibitor H89. Dorsomorphin induced rapid and sustained ERK1 ⁄ 2 activation; however, dorsomorphin-mediated ERK1 ⁄ 2 activation and neuritogenesis were robustly inhibited in the presence of U0126 or H89, but not GW441756. These findings suggest that dorsomorphin has the potential to induce neuritogenesis in PC12 cells, a response that requires the activation of PKA-dependent MEK-ERK1 ⁄ 2 signaling.
Shape memory alloys (SMAs) including superelastic alloys have unique properties such as shape memory and superelasticity, thus they are recognized as very useful biomaterials. These properties are very advantageous for medical use, and actually the SMA wires have been widely used in medical field. However, biocompatibility of nickel-titanium (Ni-Ti) alloy, which is the only practical SMA at present, has been questioned because of its high nickel content. The aim of this study was to evaluate the biocompatibility of a newly developed Ni-free Ti-based SMA for medical use. The newly developed SMA made of Ti-Mo-Sn-Zr system was processed into a disk of 15.1 mm in diameter. Pure titanium of the same shape was prepared as control. All the disk surfaces were polished using emery papers, #120, #400, and #600. Scanning electron microscopy and a 3D optics profiler were used to evaluate the surface of the materials. In vitro evaluations included colony examination for evaluation of the cell cytotoxicity, DNA quantification for the cell proliferation, Alamar blue assay for metabolic activity, FDA staining for the live cell imaging, and cell cycle analysis, using Chinese hamster fibroblastic V-79 cells and mouse osteoblastic MC3T3-E1 cells. In colony examination and DNA quantification, there was no significant difference between the Ti-Mo-Sn-Zr and the pure titanium. In FDA staining, cultured cells on the Ti-Mo-Sn-Zr alloy showed the same biocompatibility as those on the pure titanium. The present results suggest that the newly developed Ti-Mo-Sn-Zr alloy showed the high biocompatibility comparable to pure titanium and can be used as efficient biomaterial for medical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.