In this study, the quantitative fluctuation of cytoplasmic lipid droplets (LD) and cryotolerance were investigated in bovine embryos derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes developed in different culture systems using serum-free or serum-containing media. The serum-free cultures were grown using IVMD101 medium in conjunction with bovine cumulus/granulosa cell (BCGC) cocultures or IVD101 medium without BCGC cocultures, and the serum-containing cultures were grown in the presence of BCGC cocultures using HPM199 medium supplemented with 5% calf serum (HPM199 + CS). Large numbers of sudanophilic LD were present in the cytoplasm of bovine embryos from 2-cell to hatched blastocyst stages, and the number and size differed between the embryos cultured in serum-free and serum-supplemented media. In the embryos cultured in HPM199 + CS, large (2-6 microm in diameter) sudanophilic LD increased significantly from the morula to the blastocyst stages. Throughout the embryonic development, the embryos developed in serum-free cultures with and without BCGC cocultures had numerous sudanophilic LD, but most of these droplets were small (<2 microm in diameter) and large LD were less numerous than those embryos cultured in HPM199 + CS. Giant LD (>6 microm in diameter) were frequently observed in morulae and blastocysts (including early blastocysts) developed in HPM199 + CS. Electron microscopic observations demonstrated that large LD were abundant in the cytoplasm of trophoblast and embryonic (inner cell mass) cells of blastocysts cultured in HPM199 + CS. These large LD were identified as osmophilic LD, an indication that these lipid inclusions contained a significant proportion of unsaturated lipids. Many elongated mitochondria were found in embryos developed in IVMD101 and IVD101 at the morula and early blastocyst stages, whereas many of the mitochondria in the morulae developed in HPM199 + CS were of an immature form such as spherical or ovoid shape. The survival and hatching rates of embryos (morulae, early blastocysts, and blastocysts) produced in serum-free media (both IVMD101 and IVD101) after post-thaw culture were superior to those of embryos produced in serum-containing medium. These results showed that bovine embryos cultured in serum-containing medium abnormally accumulated cytoplasmic lipids into their cytoplasm and the excess accumulation of cytoplasmic LD in embryos may affect the cryotolerance of embryos.
The ultrastructure of bovine embryos developed from in vitro‐matured and ‐fertilized oocytes, cocultured with bovine cumulus/granulosa cells either in a serum‐free medium (IVMD101) or in a serum‐containing medium (TCM199+CS) was compared. Embryos up to the eight‐cell stage had many cellular organelles and cytoplasmic components that were randomly distributed in the cytoplasm. Mitochondria were spherical or ovoid and had only a few peripheral cristae. There were no obvious differences in the ultrastructure between embryos developed in IVMD101 and TCM199+CS up to the eight‐cell stage. However, conspicuous differences in the ultrastructural features between the embryos cultured in IVMD101 and TCM199+CS were observed at the morula and blastocyst stages. At the morula stage, embryos cultured in IVMD101 had cells containing elongated mitochondria, well‐developed Golgi apparatus, lipid droplets, and large vesicles resembling lysosomes. The lysosome‐like vesicles were partially filled with electron‐dense materials and were frequently fused with lipid droplets. The blastomeres of morulae cultured in TCM199+CS contained numerous large lipid droplets and fewer lysosome‐like vesicles than those cultured in IVMD101. In blastocysts cultured in IVMD101, lysosome‐like vesicles were frequently observed in the trophoblast cells and lipid droplets were present in the cytoplasm of trophoblast and inner cell mass (ICM)‐cells, but they were not abundant. On the other hand, the blastocysts developed in TCM199+CS contained fewer lysosome‐like vesicles and large numbers of lipid droplets. This accumulation of lipid droplets was higher in the trophoblast cells than in the ICM‐cells. This study showed major differences in the ultrastructural features between the morulae and blastocysts from serum‐free and serum‐supplemented cultures, suggesting that the ultrastructural differences may reflect physiological characteristics of embryos. Mol. Reprod. Dev. 53:325–335, 1999. © 1999 Wiley‐Liss, Inc.
This study was carried out to determine the effects of growth factors (epidermal growth factor, transforming growth factors-alpha and -beta 1, basic fibroblast growth factor, insulin), gonadotrophins (LH, FSH), and fetal bovine serum added to TCM199 medium on cumulus expansion and fertilization during in vitro maturation, and on subsequent embryonic development of bovine cumulus cell-enclosed oocytes. Epidermal growth factor, transforming growth factor-alpha, LH and FSH enhanced cumulus expansion and oocyte fertilizability. No significant effect was achieved with transforming growth factor-beta 1 nor with basic fibroblast growth factor. No additive stimulation on cumulus expansion and oocyte fertilizability was observed when epidermal growth factor was combined with LH or FSH. The addition of either epidermal growth factor or transforming growth factor-alpha to the maturation medium increased the number of fertilized ova that developed to the blastocyst stage. These results demonstrate the potential use of epidermal growth factor and transforming growth factor-alpha in obtaining high quality mature bovine oocytes for in vitro fertilization.
Abstract.A serum-free culture system was used to allow determination of the fatty acid composition of bovine embryos during in vitro development. The proportion of embryos developing to the blastocyst stage in serum-free medium (TCM199 supplemented with bovine serum albumin, insulin, apotransferrin and transforming growth factor-α; BITTα) was as high as in serum-supplemented medium (TCM199+5% calf serum). Bovine blastocysts grown in serum-supplemented medium contained abundant lipid droplets in the cytoplasm. The fatty acid composition of bovine immature oocytes, embryos at 2-cell and blastocyst stages cultured in serum-free or serum-supplemented medium was determined by capillary column gas chromatography. Additionally, the fatty acid composition of calf serum alone was determined. Myristic acid (59.6%) was the most abundant fatty acid in immature oocytes followed by docosahexaenoic acid (12.3%). The fatty acid profiles of two-cell embryos derived in the serum-free medium were similar to those of immature oocytes. In contrast, two-cell embryos derived in the serum-supplemented medium showed high levels of palmitic (27.6%) and stearic (27.2%) acids and a low level of myristic acid (21.9%). For blastocysts grown in the serum-free medium, myristic acid (35.7%) was high and palmitic (17.0%) and stearic (12.5%) acids were moderately high. On the other hand, blastocysts developed in the serum-supplemented medium retained high levels of palmitic (30.5%) and stearic (24.2%) acid compositions and had considerably increased levels of palmitoleic (16.3%) and oleic (12.1%) acids. High levels of oleic (17.3%), palmitic (16.5%) and stearic (12.3%) acids were detected in calf serum, which were similar to the profile of the 2-cell and blastocyst stage embryos cultured with serum. This study shows that bovine embryos grown in serum-supplemented medium showed different morphology and fatty acid composition when compared to those cultured in serum-free medium.
The ultrastructure of bovine morulae and blastocysts developed from in vitro-matured and -fertilized oocytes in a serum-supplemented medium was compared with that of morulae and blastocysts collected non-surgically from superovulated cows. In the in vivo-derived morulae, two characteristic cells types could be identified by the electron-density of their cytoplasm and by their ultrastructural features. One type appeared light in color with low electron-dense cytoplasm. These cells were located in the peripheral layer of the cluster of blastomeres, possessed numerous cellular organelles such as mitochondria and Golgi apparatus and had microvilli projecting into the perivitelline space. The other cell type was distinguished by cytoplasm that stained more densely than that of the lighter-appearing cells. The darker-appearing cells generally possessed fewer organelles than the lighter cells, but many lysosome-like structures were present in the cytoplasm. The in vitro-developed morulae also contained two types of cells similar to those observed in the in vivo morulae. However, most of the in vitro-developed cells possessed numerous lipid droplets and contained fewer lysosome-like structures than the cells of the in vivo-derived morulae. The blastocysts, both in vivo and in vitro, showed a clear differentiation of trophoblast cells and inner cell mass (ICM)-cells. In the in vivo-derived blastocyst, the apical membrane of trophoblast cells was covered with large, numerous microvilli and well-developed junctional complexes were observed. Lipid droplets were present in the cytoplasm of trophoblast and ICM-cells but were not abundant. In vitro-developed blastocysts showed less well-developed junctional complexes between trophoblast cells, less well-developed apical microvilli on the trophoblast cells, and contained large numbers of lipid droplets. This accumulation of lipid droplets was higher in the trophoblast cells than in the ICM-cells. The zonae pellucidae of in vitro-developed embryos were thinner than that of the in vivo-derived embryos. This study demonstrates conspicuous differences in the ultrastructural features between the in vivo-derived and in vitro-developed embryos, suggesting that the ultrastructure may reflect the various physiological anomalies observed in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.