A sparse Laguerre-Volterra autoregressive model has been developed as feature extraction from subdural human EEG data for seizure prediction in temporal lobe epilepsy. The use of Laguerre-Volterra kernel can compactly yield an autoregressive model of longer system memory without increasing the number of the coefficients. In 6 sets of seizure, we used a sparse Laguerre-Volterra autoregressive model with 6 coefficients and the decay parameter of 0.2 and obtained the 10-fold cross-validation prediction results of high Matthews correlation coefficients (0.7-1) and low prediction errors (<;15%). These results demonstrate that the sparse Laguerre-Volterra autoregressive model is effective in the feature extraction for seizure prediction. Finally, this sparse Laguerre-Volterra method can be easily adapted to a potentially more powerful nonlinear autoregressive model as the feature extraction rather than linear autoregressive model that we are currently using.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.