In the last decade, the application of information technology and artificial intelligence algorithms are widely developed in collecting information of cancer patients and detecting them based on proposing various detection algorithms. The K-Nearest-Neighbor classification algorithm (KNN) is one of the most popular of detection algorithms, which has two challenges in determining the value of k and the volume of computations proportional to the size of the data and sample selected for training. In this paper, the Gaussian Brownian Motion Optimization (GBMO) algorithm is utilized for improving the KNN performance to breast cancer detection. To achieve to this aim, each gas molecule contains the information such as a selected subset of features to apply the KNN and k value. The GBMO has lower time-complexity order than other algorithms and has also been observed to perform better than other optimization algorithms in other applications. The algorithm and three well-known meta-heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Imperialist Competitive Algorithm (ICA) have been implemented on five benchmark functions and compared the obtained results. The GBMO+KNN performed on three benchmark datasets of breast cancer from UCI and the obtained results are compared with other existing cancer detection algorithms. These comparisons show significantly improves this classification accuracy with the proposed detection algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.