Smart downlink scheduling can be used to reduce infrastructure-to-vehicle energy costs in delay tolerant roadside networks. In this thesis this type of scheduling is incorporated into ON/OFF roadside unit sleep activity, to further reduce infrastructure power consumption. To achieve significant power savings however, the OFF-to-ON sleep transitions may be very lengthy, and this overhead must be taken into account when performing the scheduling. The OFF/ON sleep transitions are incorporated into a lower bound on energy use for the constant bit rate air interface case. An online scheduling algorithm referred to as the Flow Graph Sleep Scheduler (FGS) is then introduced which makes locally optimum ON/OFF cycle decisions. This is done by computing energy estimates needed both with and without a new OFF/ON cycle. The energy calculation can be efficiently done using a novel minimum flow graph formulation. We also consider the fixed transmit power, variable bit rate, air interface case. As before, a lower bound on RSU energy use is computed by formulat-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.