Over the past few decades, microplastics have become increasingly ubiquitous in the environment and now contaminate the bodies of many living organisms, including humans. Microplastics, as defined here, are plastics within the size range 0.1 μm and 5 mm and are a worrying form of pollution due to public health concerns. This mini-review aims to summarise the route of entry of microplastics into humans and explore the potential detrimental health effects of microplastics. Trophic transfer is an important pathway for microplastic to be transferred across different groups of organisms, with ingestion is regarded as one of the major routes of exposure for humans. Other pathways include inhalation and dermal contact. The health consequences of microplastics manifest because these materials can translocate into the circulatory system and accumulate in the lungs, liver, kidney, and even brain, regardless of the route of entry. Health effects include gastrointestinal disturbances such as inflammation and gut microbiota disruption, respiratory conditions, neurotoxicity and potential cancers. Overall, while it is apparent that microplastics are causing adverse effects on different biological groups and ecosystems, current research is largely focused on marine organisms and aquaculture. Therefore, more studies are needed to investigate specific effects in mammalian cells and tissues, with more long-term epidemiological studies needed on human population considered to be at high-risk due to socioeconomic or other circumstance. Knowledge of the toxicity and long-term health impacts of microplastics is currently limited and requires urgent attention.
Over the past few decades, microplastics have become increasingly ubiquitous in the environment and now contaminate the bodies of many living organisms, including humans. Microplastics, as defined here, are plastics within the size range 0.1 μm and 5 mm and are a worrying form of pollution due to public health concerns. This mini-review aims to summarise the route of entry of microplastics into humans and explore the potential detrimental health effects of microplastics. Trophic transfer is an important pathway for microplastic to be transferred across different groups of organisms, with ingestion is regarded as one of the major routes of exposure for humans. Other pathways include inhalation and dermal contact. The health consequences of microplastics manifest because these materials can translocate into the circulatory system and accumulate in the lungs, liver, kidney, and even brain, regardless of the route of entry. Health effects include gastrointestinal disturbances such as inflammation and gut microbiota disruption, respiratory conditions, neurotoxicity and potential cancers. Overall, while it is apparent that microplastics are causing adverse effects on different biological groups and ecosystems, current research is largely focused on marine organisms and aquaculture. Therefore, more studies are needed to investigate specific effects in mammalian cells and tissues, with more long-term epidemiological studies needed on human population considered to be at high-risk due to socioeconomic or other circumstance. Knowledge of the toxicity and long-term health impacts of microplastics is currently limited and requires urgent attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.