Zygotic epigenetic reprogramming entails genome-wide DNA demethylation that is accompanied by Ten-Eleven Translocation 3 (Tet3)-driven oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC)1-4. Here we demonstrate using detailed immunofluorescence analysis and ultra-sensitive LC/MS based quantitative measurements that the initial loss of paternal 5mC does not require 5hmC formation. Small molecule inhibition of Tet3 activity as well as genetic ablation impedes 5hmC accumulation in zygotes without affecting the early loss of paternal 5mC. Instead, 5hmC accumulation is dependent on the activity of zygotic Dnmt3a and Dnmt1, documenting a role for Tet3 driven hydroxylation in targeting de novo methylation activities present in the early embryo. Our data thus provide further insights into the dynamics of zygotic reprogramming revealing intricate interplay between DNA demethylation, de novo methylation and Tet3 driven hydroxylation.
Chromosome segregation errors in mammalian oocytes compromise development and are particularly prevalent in older females, but the aging-related cellular changes that promote segregation errors remain unclear [1, 2]. Aging causes a loss of meiotic chromosome cohesion, which can explain premature disjunction of sister chromatids [3-7], but why intact sister pairs should missegregate in meiosis-I (termed non-disjunction) remains unknown. Here, we show that oocytes from naturally aged mice exhibit substantially altered spindle microtubule dynamics, resulting in transiently multipolar spindles that predispose the oocytes to kinetochore-microtubule attachment defects and missegregation of intact sister chromatid pairs. Using classical micromanipulation approaches, including reciprocally transferring nuclei between young and aged oocytes, we show that altered microtubule dynamics are not attributable to age-related chromatin changes. We therefore report that altered microtubule dynamics is a novel primary lesion contributing to age-related oocyte segregation errors. We propose that, whereas cohesion loss can explain premature sister separation, classical non-disjunction is instead explained by altered microtubule dynamics, leading to aberrant spindle assembly.
The molecular mechanism by which sperm triggers Ca 2C oscillation, oocyte activation, and early embryonic development has not been clarified. Recently, oocyte activation has been shown to be induced by sperm-specific phospholipase Cz (PLCz). The ability of PLCz to induce oocyte activation is highly conserved across vertebrates. In the present study, porcine PLCz cDNA was identified and the nucleotide sequence was determined. The expression pattern of porcine PLCz mRNA during the period of postnatal testicular development was shown to be similar to that of mouse PLCz. PLCz mRNA expression in the pig and mouse was detected only in the testes when the elongated spermatids had differentiated, and was detected from day 96 after birth in the pig. Histological examination of porcine testis during the period of postnatal development revealed the presence of spermatozoa from day 110 after birth. These findings suggest that the synthesis of PLCz mRNA starts when spermiogenesis is initiated. Microinjection of porcine PLCz complementary RNA into porcine oocytes demonstrated that porcine PLCz has the ability to trigger repetitive Ca 2C transients in porcine oocytes similar to that observed during fertilization. It was also found that porcine PLCz cRNA has the potential to induce oocyte activation and initiate embryonic development up to the blastocyst stage.
The Greatwall kinase orthologue Mastl regulates timely activation of APC/C to allow meiosis I exit and suppresses PP2A activity and thereby allows the rapid rise of Cdk1 activity that is necessary for meiosis II entry in mouse oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.