Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci.
Chaperone-enriched domains are formed in the nuclei of cells lytically infected with herpes simplex virus type 1 (HSV-1). These domains, called VICE, for virus induced chaperone enriched, contain Hsc70, Hsp70, Hsp40, Hsp90, polyubiquitinated proteins, and components of the proteasome machinery. Accumulating evidence indicates that these sites may be utilized during infection to sequester misfolded, modified, or otherwise unwanted proteins away from viral replication compartments, sites of robust transcription, DNA synthesis, and capsid maturation. To further explore the role of cellular chaperones and VICE domains during HSV-1 infection, we have analyzed the cytoprotective chaperone Hsp27. Here we present evidence that Hsp27, which is known to possess several antioxidant functions, is rapidly reorganized and modified at early stages in response to HSV-1 infection and signaling from the mitogen-activated protein kinase p38. Immunofluorescence analysis and fractionation experiments reveal disparate subcellular localizations of nonphosphorylated and phosphorylated forms of Hsp27 during wild-type HSV-1 infection. Unmodified forms of Hsp27 are localized in nuclear foci that are outside of replication compartments, adjacent to VICE domains, and in the cytoplasm. Conversely, we find that phosphorylated forms of Hsp27 are localized exclusively in the cytoplasm. Last, in cells depleted of all forms of Hsp27, virus replication is significantly reduced.
Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral DNA replication foci. Mre11 foci formation at DNA damage induced by ionizing radiation depends on the Nbs1 component of the MRN complex and is stabilized by the mediator of DNA damage checkpoint protein 1 (Mdc1). We find that Nbs1 is required for Mre11 localization at DNA replication foci in Ad E4 mutant infections. Mre11 is important for Mdc1 foci formation in infected cells, consistent with its role as a sensor of DNA damage. Chromatin immunoprecipitation assays indicate that both Mre11 and Mdc1 are physically bound to viral DNA, which could account for their localization in viral DNA containing foci. Efficient binding of Mre11 to E4 mutant DNA depends on the presence of Nbs1, and is correlated with a significant E4 mutant DNA replication defect. Our results are consistent with a model in which physical interaction of Mre11 with viral DNA is mediated by Nbs1, and interferes with viral DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.