The rate of brain atrophy and its relationship to clinical disease progression in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) is not clear. Twenty-four patients with PSP, 11 with MSA-P (Parkinsonian variant), 12 with Parkinson's disease, and 18 healthy control subjects were recruited for serial MRI scans, clinical assessments and formal neuropsychological evaluations in order to measure brain atrophy during life and its association with disease progression in PSP and MSA-P. Serial scans were registered and rates of whole brain atrophy calculated from the brain-boundary shift integral. Regional rates of atrophy were calculated in the brainstem (midbrain and pons), the cerebellum, the lateral and third ventricles as well as frontal and posterior inferior brain regions, by locally registering to a region of interest in order to derive a local boundary shift integral (BSI). 82% of recruited subjects completed serial MRI scans (17 PSP, 9 MSA-P, 9 Parkinson's disease patients and 18 healthy controls). Mean (SD) annualized rates of whole-brain atrophy were greatest in PSP: 1.2% (1.0%), three times that in controls. Mean (SD) midbrain atrophy rates in PSP, 2.2% (1.5%), were seven times greater than in healthy controls. In MSA-P, atrophy rates were greatest in the pons: 4.5% (3.2%), over 20 times that in controls and three times the rate of pontine atrophy in PSP. Atrophy rates in Parkinson's disease were not significantly different from control rates of atrophy. Variability in the atrophy rates was lower when calculated using the BSI rather than manual measurements. Worsening motor deficit was associated with midbrain atrophy in PSP, and ponto-cerebellar atrophy in MSA-P. Worsening executive dysfunction was associated with increased rates of frontal atrophy in PSP. Cerebellar atrophy rates were better discriminators of MSA-P than cross-sectional volumes. We confirm that serial MRI can be applied to measure whole brain and regional atrophy rates in PSP and MSA-P. Regional rather than whole-brain atrophy rates better discriminate PSP and MSA-P from healthy controls. Clinico-radiological associations suggest these regional atrophy rates have potential as markers of disease progression in trials of novel therapies.
The authors propose that together with other radiologic features of progressive supranuclear palsy (PSP) such as midbrain atrophy, a visual assessment of the superior cerebellar peduncle may help increase the clinical diagnostic accuracy in PSP.
Progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are neurodegenerative disorders, each with a prevalence of around 5 per 100,000. Regional brain atrophy patterns differ in the two disorders, however, and magnetic resonance imaging is sometimes helpful in distinguishing them in the later stages. We measured whole brain and regional volumes, including cerebellum, pons, midbrain, superior cerebellar peduncle (SCP), and ventricular volumes as well as frontal and posterior-inferior cerebral regions in 18 subjects with PSP, 9 with MSA-P (parkinsonian phenotype), 9 with Parkinson's disease (PD), and 18 healthy controls. Associations between these volumes, cognitive profiles, and clinical measures of disease severity and motor disability were assessed. Mean midbrain volume was 30% smaller in PSP than in PD or controls (P < 0.001) and 15% smaller than in MSA-P (P = 0.009). The mean SCP volume in PSP was 30% smaller than in MSA-P, PD, or controls (P < 0.001). Mean cerebellar volumes in MSA-P were 20% smaller than in controls and PD and 18% smaller than in PSP (P = 0.01). Mean pontine volume in MSA-P was 30% smaller than in PD or controls (P < 0.001) and 25% smaller than in PSP (P = 0.01). Motor disability was most strongly associated with midbrain volume, and more severe executive dysfunction was associated with reduced frontal volume. These distinct patterns of cortical and subcortical atrophy, when considered together rather than independently, better differentiate PSP and MSA-P from each other and also from healthy controls.
Progressive supranuclear palsy (PSP) and multiple system (MSA) atrophy are associated with progressive brain atrophy. Serial MRI can be applied in order to measure this change in brain volume and to calculate atrophy rates. We evaluated MRI derived whole brain and regional atrophy rates as potential markers of progression in PSP and the Parkinsonian variant of multiple system atrophy (MSA-P). 17 patients with PSP, 9 with MSA-P and 18 healthy controls underwent two MRI brain scans. MRI scans were registered, and brain and regional atrophy rates (midbrain, pons, cerebellum, third and lateral ventricles) measured. Sample sizes required to detect the effect of a proposed disease-modifying treatment were estimated. The effect of scan interval on the variance of the atrophy rates and sample size was assessed. Based on the calculated yearly rates of atrophy, for a drug effect equivalent to a 30% reduction in atrophy, fewer PSP subjects are required in each treatment arm when using midbrain rather than whole brain atrophy rates (183 cf. 499). Fewer MSA-P subjects are required, using pontine/cerebellar, rather than whole brain atrophy rates (164/129 cf. 794). A reduction in the variance of measured atrophy rates was observed with a longer scan interval. Regional rather than whole brain atrophy rates calculated from volumetric serial MRI brain scans in PSP and MSA-P provide a more practical and powerful means of monitoring disease progression in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.