Abstract:The current study was conducted to examine the impact of climate change on rainfall in Jharkhand state of India. It deals with the analysis of the historical spatiotemporal variability of rainfall on the annual, seasonal and monthly scale in 18 districts of the state Jharkhand over a period of 102 years . Mann-Kendall trend test and Sen's slope method were applied to detect trends and the magnitude of change over the time period of 102 years . Mann Whitney Pettit's method and Cumulative deviations test were applied for detection of shift point in the series. The results obtained year 1951 to be the most probable shift point in annual rainfall. The trend analysis along with the percent change for the data series before and after the shift point was also done. A significant downward rainfall trend was found in annual, monsoon and winter rainfall over the period of 102 years. The maximum decrease was found for the Godda (19.77%) and minimum at Purbi Singhbum station (1.95%). Trend analysis before shift point, i.e., during 1901-1951 showed an upward trend in annual rainfall and after shift point a downward trend. The trend analysis for entire Jharkhand demonstrated a significant downward trend in annual and monsoon rainfall with a decrease of 14.11% and 15.65% respectively. A downward trend in seasonal rainfall will have a more pronounced effect on agricultural activities in the area as it may affect the growth phase of the kharif crops (May-October) in the region.
This study aims to analyse the seasonality of rainfall for Jharkhand State, India over the period of the last 102 years. Rainfall seasonality index and individual seasonality index values were calculated, and trend analysis was performed on yearly data for the individual seasonality index, using the Mann–Kendall test, the sequential Mann–Kendall test and Sen's slope method (also known as the Theil–Sen estimator). The value of the mean individual seasonality index varied from 0.815378 to 0.977228, which indicates that rainfall in Jharkhand is markedly seasonal, with a long dry season. The results of the Mann–Kendall trend test revealed a significant decreasing trend in individual seasonality index over Deoghar, Dumka, Godda, Pakaur and Sahebganj; however, the magnitude of this trend was found to be close to negligible. This decreasing trend could have a pronounced effect on agricultural activities.
The aim of this paper is to understand the historical and future climate change situation using 15 extreme precipitation indices in the Pare watershed of Arunachal Pradesh, India. Historical period (1981–2019) and future period (2021–2050) precipitation data are used to compute extreme precipitation indices in RClimDex software. The Pare watershed was divided into 13 subwatersheds; however, the results of the study showed no significant spatial variation. This study found that majority of the precipitation extreme indices are showing decreasing trends during the historical period and most of them are statistically insignificant at 95% confidence level. Only three indices such as SDII, CWD and MRI are found significant at 0.05 level in the Pare watershed. Though not significant, the annual precipitation amount in the Pare watershed was found decreasing at the rate of 3.3 mm per year during the study period. The trend analysis over the whole watershed indicated significant decreasing trends for CWD and MRI while indicating significant increasing trend for SDII. The representative concentration pathway (RCP) 4.5 and 8.5 projected the extreme precipitation indices in a very similar way. The results of the trend analysis under RCP 8.5 showed significant decreasing trend only at SW10 for the index-moderate rainfall index (MRI). Various cases of RX1DAY and RX5DAY not falling during the months of monsoon were observed in both the historical and future periods. The percentage departures of the monsoon from its annual total had increased in RCP 4.5 and RCP 8.5 scenarios as compared to the historical periods. The results of this climatic investigation suggest that the precipitation regime in the study area had been accompanied and also expected by overall reduction in precipitation amount, milder rainfall events, reduction in monsoon (June–September) rainfall and drier climatic conditions. With the prevalent historical scenario and future projected scenarios of the extreme precipitation indices, the water resource potential in the study area is expected to be greatly reduced, for which the authors seek the attention of various stakeholders in water and allied sectors to come together and discuss on the construction of water conservation structures so that agricultural activities can be expanded and remain sustainable.
The Lisino training and experimental forest of the Saint-Petersburg State Forest Technical University was chosen as a study area. The forest is located in the central part of the Leningrad region and has a high level of protection as a forest of scientific and historical value. According to the official data, mean annual temperature in the region increased by 0.6 °C within 10 years as well as precipitation. The impact determination of changing climate conditions on Norway spruce trees growth was the aim of this study. Three most representative compartments dominated by Norway spruce (Picea abies (L.) Karst.) were selected for data collection. Core samples were taken by the Pressler increment borer from 107 dominant trees while climatic data were obtained from the nearest weather stations. Tree rings were measured and analyzed using WinDendro software while climate data were processed by Microsoft Excel. Tree ring data cover the time interval from 1848 to 2011, each ring was characterized by width, calendar year, age and diameter of the tree. Radial growth was analyzed within age and diameter classes. Annual rings widths were varied from 0.1 to 6 mm. There was a positive trend in age classes of 0-20, 21-40 and 41-60 years old. The growth was very slow in the age classes of 61-80, 81-100 and >100. Diameters are larger in the age classes of 20-40 and 41-60 as compare to the local diameter growth table which was developed in the 19th century. Diameters for age classes older than 41-60 years were less than prescribed by the diameter growth table. Annual rings width for all age classes also demonstrate cyclic dynamics, moreover, the decline in growth sometimes occurred in recent decades. Multiple regression was used for developing the response function of growth to changes in climatic conditions. There was revealed a high correlation (90 %) and low influence of vegetation period climate data on growth during 1848-2011 (0.08102 mm/°C and 0.00085 mm/mm). Likewise, analysis shows that growth is higher in young and middle-aged than mature and over mature stands. Overall, climate change impact has a positive effect on the radial growth of Norway spruce for the studied area, however, not for all age and diameter classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.