This study tested the hypothesis that the NKCC is involved in volume regulation, specifically regulatory volume increase (RVI), in resting skeletal muscle. Neurally and vascularly isolated rat hindlimbs were perfused with a bovine erythrocyte perfusate containing 42K or 86Rb as markers of unidirectional K+ flux across the sarcolemma. Compared to controls, perfusion with 120 µM bumetanide (a specific inhibitor of the NKCC) decreased JinK by 15±2%, indicating the functional presence of the NKCC. Experiments with ouabain (to block active K+ transport by the Na,K ATPase) showed that the bumetanide-sensitive component of JinK comprised 35% of the total ouabain-sensitive JinK. Inhibition of NKCC resulted in a net loss of water by muscle. When hindlimbs were perfused with hypertonic (380 mOsm/L by addition of sucrose) perfusate for 20 min, after initially blocking K+ channels with 1 mM barium, JinK rapidly (2-3 min) increased 2-fold followed by a rapid decline. This rapid, transient increase in JinK was abolished with bumetanide, confirming that perfusion with hypertonic perfusate stimulated NKCC activity and RVI. The hypertonic perfusate also resulted in temporally associated decreases in net water uptake by muscle. It is concluded that a functional NKCC is present in mammalian skeletal muscle and that it is involved in cell volume regulation.
The contributions of Na+/K+-ATPase, K+ channels, and the NaK2Cl cotransporter (NKCC) to total and unidirectional K+ flux were determined in mammalian skeletal muscle at rest. Rat hindlimbs were perfused in situ via the femoral artery with a bovine erythrocyte perfusion medium that contained either 86Rb or 42K, or both simultaneously, to determine differences in ability to trace unidirectional K+ flux in the absence and presence of K+-flux inhibitors. In most experiments, the unidirectional flux of K+ into skeletal muscle (J(in)K) measured using 86Rb was 8-10% lower than J(in)K measured using 42K. Ouabain (5 mM) was used to inhibit Na+/K+-ATPase activity, 0.06 mM bumetanide to inhibit NKCC activity, 1 mM tetracaine or 0.5 mM barium to block K+ channels, and 0.05 mM glybenclamide (GLY) to block ATP-sensitive K+ (K(ATP)) channels. In controls, J(in)K remained unchanged at 0.31 +/- 0.03 micromol x g(-1) x min(-1) during 55 min of perfusion. The ouabain-sensitive Na+/K+-ATPase contributed to 50 +/- 2% of basal J(in)K, K+ channels to 47 +/- 2%, and the NKCC to 12 +/- 1%. GLY had minimal effect on J(in)K, and both GLY and barium inhibited unidirectional efflux of K+ (J(out)K) from the cell through K+ channels. Combined ouabain and tetracaine reduced J(in)K by 55 +/- 2%, while the combination of ouabain, tetracaine, and bumetanide reduced J(in)K by 67 +/- 2%, suggesting that other K+-flux pathways may be recruited because the combined drug effects on inhibiting J(in)K were not additive. The main conclusions are that the NKCC accounted for about 12% of J(in)K, and that K(ATP) channels accounted for nearly all of the J(out)K, in resting skeletal muscle in situ.
The contributions of Na+/K+-ATPase, K+ channels, and the NaK2Cl cotransporter (NKCC) to total and unidirectional K+ flux were determined in mammalian skeletal muscle at rest. Rat hindlimbs were perfused in situ via the femoral artery with a bovine erythrocyte perfusion medium that contained either 86Rb or 42K, or both simultaneously, to determine differences in ability to trace unidirectional K+ flux in the absence and presence of K+-flux inhibitors. In most experiments, the unidirectional flux of K+ into skeletal muscle (J(in)K) measured using 86Rb was 8-10% lower than J(in)K measured using 42K. Ouabain (5 mM) was used to inhibit Na+/K+-ATPase activity, 0.06 mM bumetanide to inhibit NKCC activity, 1 mM tetracaine or 0.5 mM barium to block K+ channels, and 0.05 mM glybenclamide (GLY) to block ATP-sensitive K+ (K(ATP)) channels. In controls, J(in)K remained unchanged at 0.31 +/- 0.03 micromol x g(-1) x min(-1) during 55 min of perfusion. The ouabain-sensitive Na+/K+-ATPase contributed to 50 +/- 2% of basal J(in)K, K+ channels to 47 +/- 2%, and the NKCC to 12 +/- 1%. GLY had minimal effect on J(in)K, and both GLY and barium inhibited unidirectional efflux of K+ (J(out)K) from the cell through K+ channels. Combined ouabain and tetracaine reduced J(in)K by 55 +/- 2%, while the combination of ouabain, tetracaine, and bumetanide reduced J(in)K by 67 +/- 2%, suggesting that other K+-flux pathways may be recruited because the combined drug effects on inhibiting J(in)K were not additive. The main conclusions are that the NKCC accounted for about 12% of J(in)K, and that K(ATP) channels accounted for nearly all of the J(out)K, in resting skeletal muscle in situ.
The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 +/- 4% of the total JinK in 28 +/- 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 +/- 8% of the total JinK in 38 +/- 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 +/- 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 +/- 9% (0.30 +/- 0.03 to 0.16 +/- 0.02 micromol x min(-1) x g(-1)), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 +/- 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 +/- 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.
The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 +/- 4% of the total JinK in 28 +/- 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 +/- 8% of the total JinK in 38 +/- 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 +/- 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 +/- 9% (0.30 +/- 0.03 to 0.16 +/- 0.02 micromol x min(-1) x g(-1)), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 +/- 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 +/- 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.