This study investigates the electrical performance of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors with Ga2O3 gate dielectric and applied on deep-ultraviolet phototransistors. To reduce the leakage current, we introduce the SiO2 interlayer dielectric, which effectively reduces the off-current. Under the illumination of 250 nm, the measured responsivity of the device was 3.2 A/W at an applied gate bias of 0 V. The photo-generated carriers were injected into the channel by the applied electric field and Fowler-Nordheim tunneling. A large photocurrent and responsivity can be obtained which is attributed to the high mobility of the a-IGZO channel.
This study investigates the electrical performance of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with a Ta2O5 gate dielectric under monochromatic illumination. The relationship between the phototransistor performance and oxygen partial pressure is determined. The oxygen content of the a-IGZO channel significantly affects the electrical and optical characteristics of a-IGZO TFTs. At applied gate biases of 0, 0, and 0.25 V, oxygen partial pressures of 0%, 0.1%, and 0.2% yielded measured device responsivities of 0.23, 0.44, and 4.75 A/W, respectively. Oxygen content can be used to control the mobility of TFTs, which can amplify photocurrent and enhance the responsivity of a-IGZO TFTs with a Ta2O5 gate dielectric.
In this study, we report the growth and characterization of lateral ZnO nanowires (NWs) on ZnO:Ga/glass templates. Using x-ray diffraction and micro-Raman spectroscopy, it was found that crystal quality of the as-grown ZnO NWs is good. It was also found that the average length and average diameter of the laterally grown ZnO NWs were 5 µm and 30 nm, respectively. A vacuum pressure sensor was then fabricated using a single NW bridging across two electrodes. By measuring the current-voltage characteristics of the samples at low pressure, we found that the currents were of 17, 34.28, 57.37 and 96.06 nA for the ZnO NW measured at 1 × 10(-3) Torr, 1 × 10(-4) Torr, 3 × 10(-5) Torr and 5 × 10(-6) Torr, respectively. These values suggest that the laterally grown ZnO NWs prepared in this study are potentially useful for vacuum pressure sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.