One of the main challenges to paediatric drug administration is swallowing difficulties, hindering the acceptability of the medicine and hence clinical outcomes. This study aims at developing a child-appropriate dosage form, the orodispersible mini-tablet (ODMT), using the model drug carbamazepine (CBZ). This dosage form was prepared and 3D-printed via a semi-solid extrusion technique. Design of Experiment methods were applied for optimising the formulation. The formulation with 40% (w/w) of SSG (superdisintegrant) and 5% (w/w) of PVP K30 (binder) was selected and loaded with CBZ. The drug-loaded tablets were characterised by a mean hardness of 18.5 N and a disintegrating time of 84 s, along with acceptable friability. The mean drug loading ratio of the tablets was tested as 90.56%, and the drug release rate in 0.1 M HCl reached 68.3% at 45 min. Excipients showed proper compatibility with the drug in physical form analysis. Taste assessment via an E-tongue was also conducted, where the drug did not show bitter taste signals at a low concentration in the taste assessment, and the sweetener also blocked bitterness signals in the testing. To this end, ODMTs were found to be potential candidates for child-appropriate dosage forms delivering CBZ.
Microneedles (MNs) have attracted considerable interest as a means of ocular drug delivery, a challenging delivery route due to the limitations imposed by the various biological barriers associated with this organ. In this study, a novel ocular drug delivery system was developed by formulating a dissolvable MN array containing dexamethasone-loaded PLGA microparticles for scleral drug deposition. The microparticles serve as a drug reservoir for controlled transscleral delivery. The MNs displayed sufficient mechanical strength to penetrate the porcine sclera. Dexamethasone (Dex) scleral permeation was significantly higher than in topically instilled dosage forms. The MN system was able to distribute the drug through the ocular globe, with 19.2% of the administered Dex detected in the vitreous humour. Additionally, images of the sectioned sclera confirmed the diffusion of fluorescent-labelled microparticles within the scleral matrix. The system therefore represents a potential approach for minimally invasive Dex delivery to the posterior of the eye, which lends itself to self-administration and hence high patient convenience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.