Recruitment of dendritic cells (DCs) to lymph nodes (LNs) is pivotal to the establishment of immune response. Whereas DCs have been proven to undergo afferent lymphatic pathway to enter LNs from peripheral tissues, a question remains if DCs also migrate into LNs directly from the circulation. Here we demonstrate that plasmacytoid DC (pDC) precursors can transmigrate across high endothelial venules (HEVs) of inflamed LNs in mice. Bacterial infection induces a significant number of pDC and myeloid DC (mDC) precursors into the circulation. Both subsets express a common set of chemokine receptors except CXCR3, display parallel mobilization into the blood, but show distinct trafficking pathway to the LNs. In a short-term homing assay, whereas mDC precursors migrate to peripheral tissues and subsequently to draining LNs, pDC precursors directly enter the LNs in a CXCL9 and E-selectin dependent manner. Tumor necrosis factor-alpha controls not only DC precursor mobilization into the blood but also chemokine up-regulation on LN HEVs. A similar trafficking pathway is observed also in viral infection, and CXCR3(-/-) mice-derived pDC precursors show defective trans-HEV migration. This study clarifies the inflammation-dependent, chemokine-driven distinct property of DC precursor trafficking.
Removal of senescent cells (senolysis) has been proposed to be beneficial for improving age-associated pathologies, but the molecular pathways for such senolytic activity have not yet emerged. Here, we identified glutaminase 1 (GLS1) as an essential gene for the survival of human senescent cells. The intracellular pH in senescent cells was lowered by lysosomal membrane damage, and this lowered pH induced kidney-type glutaminase (KGA) expression. The resulting enhanced glutaminolysis induced ammonia production, which neutralized the lower pH and improved survival of the senescent cells. Inhibition of KGA-dependent glutaminolysis in aged mice eliminated senescent cells specifically and ameliorated age-associated organ dysfunction. Our results suggest that senescent cells rely on glutaminolysis, and its inhibition offers a promising strategy for inducing senolysis in vivo.
Antiviral cell–mediated immunity is initiated by the dendritic cell (DC) network in lymph nodes (LNs). Plasmacytoid DCs (pDCs) are known to migrate to inflamed LNs and produce interferon (IFN)-α, but their other roles in antiviral T cell immunity are unclear. We report that LN-recruited pDCs are activated to create local immune fields that generate antiviral cytotoxic T lymphocytes (CTLs) in association with LNDCs, in a model of cutaneous herpes simplex virus (HSV) infection. Although pDCs alone failed to induce CTLs, in vivo depletion of pDCs impaired CTL-mediated virus eradication. LNDCs from pDC-depleted mice showed impaired cluster formation with T cells and antigen presentation to prime CTLs. Transferring circulating pDC precursors from wild-type, but not CXCR3-deficient, mice to pDC-depleted mice restored CTL induction by impaired LNDCs. In vitro co-culture experiments revealed that pDCs provided help signals that recovered impaired LNDCs in a CD2- and CD40L-dependent manner. pDC-derived IFN-α further stimulated the recovered LNDCs to induce CTLs. Therefore, the help provided by pDCs for LNDCs in primary immune responses seems to be pivotal to optimally inducing anti-HSV CTLs.
Various immune diseases are considered to be regulated by the balance of T helper (Th)1 and Th2 subsets. Although Th lymphocytes are believed to be generated in draining lymph nodes (LNs), in vivo Th cell behaviors during Th1/Th2 polarization are largely unexplored. Using a murine granulomatous liver disease model induced by Propionibacterium acnes, we show that retention of Th1 cells in the LNs is controlled by a chemokine, CXCL10/interferon (IFN) inducible protein 10 produced by mature dendritic cells (DCs). Hepatic LN DCs preferentially produced CXCL10 to attract 5′-bromo-2′-deoxyuridine (BrdU)+CD4+ T cells and form clusters with IFN-γ–producing CD4+ T cells by day 7 after antigen challenge. Blockade of CXCL10 dramatically altered the distribution of cluster-forming BrdU+CD4+ T cells. BrdU+CD4+ T cells in the hepatic LNs were selectively diminished while those in the circulation were significantly increased by treatment with anti-CXCL10 monoclonal antibody. This was accompanied by accelerated infiltration of memory T cells into the periphery of hepatic granuloma sites, most of them were in cell cycle and further produced higher amount of IFN-γ leading to exacerbation of liver injury. Thus, mature DC-derived CXCL10 is pivotal to retain Th1 lymphocytes within T cell areas of draining LNs and optimize the Th1-mediated immune responses.
OBJECTIVE—Although most patients with type 1 diabetes are considered to have T-cell–mediated autoimmune disease, a method of measuring of pancreatic β-cell–specific T-cell function in cases of type 1 diabetes has yet to be established. Here, we focused on interferon-inducible protein-10 (IP-10), a chemokine that promotes the migration of activated T-helper 1 (Th1) cells and measured serum IP-10 levels in patients with human type 1 diabetes, which is regarded as a Th1-mediated disease. RESEARCH DESIGN AND METHODS—Serum samples were obtained from diabetic patients, and the levels of autoantibodies (GAD and insulinoma-associated protein-2 [IA-2]) and IP-10 were measured. Diabetic patients positive for either or both of the autoantibodies were classified as Ab+ type 1, and those negative for both were classified as Ab− type 1. To evaluate islet antigen–specific responses, peripheral blood from patients stimulated with or without GAD was used, and intracellular cytokine staining for flowcytometry was performed. RESULTS—The Ab+ and Ab− type 1 groups both showed a significantly higher serum IP-10 level than the healthy subjects (P < 0.001 and P < 0.05, respectively), and the IP-10 level in the recent-onset Ab+ subgroup was significantly higher than that in the established (longstanding) Ab+ subgroup (P < 0.002). Furthermore, there was a significant positive correlation between the serum IP-10 level and the number of GAD-reactive γ-interferon–producing CD4+ cells in the Ab+ type 1 group (P < 0.007). CONCLUSIONS—Our findings demonstrate that measurement of serum IP-10 concentrations is useful in patients with type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.