In the transition to environmental friendly pretreatment of aerospace aluminum alloys, chromic acid anodizing (CAA) is being replaced by sulfuric acid (SAA), phosphoric acid (PAA) or phosphoric-sulfuric acid (PSA) anodizing. While generally the main concern is controlling the film morphology, such as the pore diameter, oxide-, and barrier layer thickness, little is known on how the anodic oxide chemistry affects the interactions at the interface upon adhesive bonding. To study the link between surface chemistry and interfacial bonding, featureless oxides were prepared by stopping the anodizing during the formation of the barrier layer. A model was developed to quantify the relative amounts of OH -, PO 4 3-and SO 4 2-by curve-fitting the XPS data.Calculations showed that almost 40% of the surface species in PAA oxide are phosphates (PO 4 3-), while about 15% are sulfates (SO 4 2 ) in SAA. When both anions were present in the electrolyte, phosphate incorporation was inhibited. Studies of the interaction between this set of Cr(VI)-free oxides and diethylenetriamine (DETA) -an amine curing-agent for epoxy resin, showed that all oxides interact with the nitrogen of DETA. However, larger ratios of Lewis-like acid-base bonding between the amine electron pair and the acidic hydroxyl on phosphate surface sites were observed.
Aluminum alloys used for aerospace applications provide good strength to weight ratio at a reasonable cost but exhibit only limited corrosion resistance. Therefore, a durable and effective corrosion protection system is required to fulfil structural integrity. Typically, an aerospace corrosion protection system consists of a multi-layered scheme employing an anodic oxide with good barrier properties and a porous surface, a corrosion inhibited organic primer, and an organic topcoat. The present review covers published research on the anodic oxide protection layer principles and requirements for aerospace application, the effect of the anodizing process parameters, as well as the importance of process steps taking place before and after anodizing. Moreover, the challenges of chromic acid anodizing (CAA) substitution are discussed and tartaric-sulfuric acid anodizing (TSA) is especially highlighted among the environmentally friendly alternatives.
The transition to Cr(VI)-free production is a great challenge in the global aerospace industry that currently still relays on it for the preparation of aluminum for bonding. Proper surface pretreatment is a prerequisite for strong and durable adhesive joint. Despite decades of experience, the nature and contribution of the different adhesion forces between the aluminum and organic adhesive remain under discussion. Herein we studied the adhesion of epoxy resin as a function of the surface chemistry of barrier-type anodic oxides prepared in sulfuric acid (SAA), phosphoric acid (PAA), and mixtures of phosphoric–sulfuric acids (PSA) and chromic acid (CAA) at different anodizing temperatures. X-ray photoelectron spectroscopy (XPS) data measured on model specimens were curve-fitted to calculate the relative amounts of O2–, OH–, PO4 3–, and SO4 2– species at the surface. The amounts of these species were then related to the mechanical performance of the joint measured by the floating roller peel test. Results show that significant initial adhesion is achieved without mechanical interlocking and independent of the type of electrolytes used for the pretreatment. Conversely, bonding stability under wet conditions is highly influenced by the surface chemistry. The wet adhesion strength increases with the hydroxyl concentration at the aluminum (oxide) surface, indicating that interfacial bonding is established through these surface hydroxyls. Phosphates and sulfates anions were not found to contribute to bonding with this type of adhesive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.