This study examined the effect of food regulations under the current criteria (e.g., 100 Bq/kg for general foods) established approximately a year after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Foods are monitored to ensure that foods exceeding the standard limit are not distributed; ~300,000 examinations per year have been performed especially since FY2014. This study comprehensively estimated the internal exposure dose resulting from the ingestion of foods containing radioactive cesium using the accumulated monitoring results. Committed effective dose was conservatively calculated as the product of the radioactive concentration randomly sampled from test results, food intake, and dose coefficient. The median, 95th, and 99th percentile of the dose were 0.0479, 0.207, and 10.6 mSv/y, respectively, in the estimation with all test results (without regulation), and 0.0430, 0.0790, and 0.233 mSv/y, respectively, in the estimation with results within the standard limits (with regulation) in FY2012. In FY2016, the dose with and without regulation were similar, except for high percentile, and those doses were significantly smaller than 1 mSv/y, which was adopted as the basis for the current criteria. The food regulation measures implemented in Japan after the FDNPP accident have been beneficial, and food safety against radionuclides has been ensured.
Focusing on the importance of wild vegetables for local residents, this study aims to validate the effects of food regulations under the current criteria (e.g., 100 Bq/kg for general foods) established approximately a year after the Fukushima Dai-ichi Nuclear Power Plant accident. Over 2,500,000 monitoring tests were performed under the criteria until fiscal year (FY) 2020. We estimated changes in internal exposure dose using test results. The effective dose was estimated using the radioactive concentration randomly sampled from the results, food intake, and dose conversion factor. As a new attempt, dose estimation reflecting the intake of wild vegetables that may have irreplaceable value for local residents was conducted. The median, 95th, and 99th percentile of the estimated dose without reflecting the wild vegetables’ intake were 0.0485, 0.183, and 10.6 mSv/year, respectively, in the estimation with all test results (no regulation) and 0.0431, 0.0786, and 0.236 mSv/year, respectively, in the estimation with results within the standard limits (regulated) in FY2012. These doses decreased with time. Although estimated doses with or without the reflection of wild vegetables’ intake were similar, estimation that is more plausible is possible, particularly for a high percentile, by reflecting the wild vegetables’ intake. Radiation doses (regulated) were significantly less than 1 mSv/year in different FYs. In Japan, food regulation measures benefit food safety.
The bone scan index (BSI) is calculated from a whole-body bone scan image; it shows the tumor burden in bone as a percentage of total skeletal mass. It has been used to determine the prognosis and to assess treatment effects; however, little has been reported on whether the BSI calculated using a two-dimensional image can accurately evaluate the three-dimensional spread in tumor volume. We investigated the relationship between tumor volume and BSI using Monte Carlo simulation (MCS). We simulated a gamma camera and constructed a voxel phantom based on an anthropomorphic phantom computed tomography (CT) image and gamma rays emitted from each part according to technetium-99m-labeled methylene diphosphonate (Tc-MDP) uptake (bone 1, soft tissue 0.2, tumor 2-32). We constructed bone scan images from the obtained counts and analyzed them using the BSI calculation software. The BSI increased with increased tumor uptake (two- to 32-fold). However, there was not always a significant difference between change in BSI and tumor uptake of eight times or greater than that of bone. When BSI was calculated with a tumor having an uptake of four-to-eight times higher than that of bone, the BSI was consistent with tumor volume, but decreased to about half the tumor volume when tumors were in the thoracic spine (Th-spine) segment. The BSI can be a good indicator of tumor volume in most segments, even though it is affected by the tumor's Tc-MDP uptake. Nevertheless, values calculated from the Th-spine should be interpreted carefully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.