The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O3 exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereas similar results could not be obtained for the O3 exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.
The two-dimensional concentration distribution of reactive oxygen species (ROSs) transported through an agarose-film tissue phantom by atmospheric-pressure plasma-jet irradiation is visualized using a KI-starch gel reagent. Oxygen addition to helium enhances ROS transportation through the film. A radial ROS distribution pattern at the plasma-irradiated film surface changes into a doughnut-shaped pattern after passing through the film. The ROS transportation speed is 0.14–0.2 mm/min. We suggest that there are two types of ROS transportation pathways in the plasma-irradiated film: linear and circular. The majority of ROSs are transported through the circular pathway. ROS concentration distributions changed markedly with irradiation distance. Diffusive ROS transportation due to a concentration gradient is negligible in plasma-irradiated films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.