<p>In this paper, a new Instrumentation Amplifier (IA) architecture for biological signal pro-cessing is proposed. First stage of the proposed IA architecture consists of fully balance differential difference amplifier and three resistors. Its second stage was designed by using differential difference amplifier and two resistors. The second stage has smaller number of resistors than that of conventional one. The IA architectures are simulated and compared by using 1P 2M 0:6-m CMOS process. From HSPICE simulation result, lower common-mode voltage can be achieved by the proposed IA architecture. Average common-mode gain (Ac) of the proposed IA architecture is 31:26 dB lower than that of conventional one under 3% resistor mismatches condition. Therefore, the Ac of the proposed IA architecture is more insensitive to resistor mismatches and suitable for biological signal processing.</p>
In this paper, an instrumentation amplifier architecture for biological signal is proposed. First stage of conventional instrumentation amplifier architecture was modified by using fully balanced differential difference amplifier and evaluated by using 1P 2M 0.6µm CMOS process. From HSPICE simulation result, lower common-mode voltage can be achieved by proposed instrumentation amplifier architecture. Actual fabrication was done and six chips were evaluated. From the evaluation result, average commonmode gain of proposed instrumentation amplifier architecture is 10.84 dB lower than that of conventional one without requiring well-matched resistors. Therefore, the proposed instrumentation amplifier architecture is suitable for biological signal processing.
<pre>In this paper, an instrumentation amplifier architecture for biological <br />signal is proposed. First stage of conventional IA architecture was modified <br />by using fully balanced differential difference amplifier and evaluated by <br />using <span>1P</span> <span>2M</span> 0.6<span>μ</span>m CMOS process. From <span>HSPICE</span> simulation result, lower <br />common-mode voltage can be achieved by proposed IA architecture. <br />Actual fabrication was done and six chips were evaluated. From the evaluation result, average common-mode gain of proposed IA architecture <br />is <span>10.84</span> dB lower than that of conventional one without requiring <br />well-matched resistors. Therefore, the proposed IA architecture <br />is suitable for biological signal processing.<br /><br /></pre>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.