The 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan released large amounts of radionuclides. Among them, 137 Cs has one of the most substantial long-term impacts on the terrestrial environment (Hi-
<p>Processes responsible for long-term changes in environmental radioactivity after the Fukushima accident are currently high on the agenda. Dynamics of particulate and dissolved radiocesium (r-Cs) has been studied on a number of water bodies, namely Abukuma River, Niida River and Maeda River, the dam reservoirs of Yokokawa (Ota River), Sakashita (Kuma River), Ogaki (Ukedo River) and Shinobu (Abukuma River) and four heavily contaminated irrigation ponds in Okuma town (Inkyozaka, Suzuuchi, Funasawa, Kashiramori). Water samples were collected for dissolved and particulate r-Cs analysis at multiple sites for these water bodies. Wash-off from slopes of contaminated catchments and river transport are key long-term pathways for radionuclide dispersal from contaminated areas after the Fukushima accident. The climate and geographical conditions for the Fukushima Prefecture of Japan are characterized by relatively high annual precipitation (1300-1800 mm/year) and steep slopes which promote higher erosion and higher particulate r-Cs wash-off. At the same time, the r-Cs distribution coefficient <em>K<sub>d</sub></em> in Fukushima rivers was found to be at least an order of magnitude higher than the corresponding values for Chernobyl-derived r-Cs and r-Cs resulting from nuclear weapon tests (NWT) in European rivers. The normalized dissolved wash-off coefficient for Fukushima river watersheds, based on the measured dissolved r-Cs activity concentrations was found to be 1-2 orders of magnitude lower than those for Chernobyl and NWT fallout. In the irrigation ponds r-Cs showed a persistent behavior and was characterized by regular seasonal variations: r-Cs concentrations tend to grow during summer and decrease during winter. Speciation analysis for Okuma ponds showed a much higher exchangeability of r-Cs in bottom sediments than catchment soils. Several methodologies to collect water samples and to separate the particulate and dissolved fractions have been used and showed comparable results for all water bodies under study. For all rivers, reservoirs, and ponds higher values of <em>K<sub>d</sub></em>(r-Cs) have been confirmed when compared with Chernobyl-derived r-Cs in European water bodies. Some observations demonstrated remobilization of r-Cs at river mouths compared to upstream sections which could be explained by the change of river water hydrochemistry from upstream to the mouth, specifically a substantial increase in the concentration of major r-Cs competing cations for selective sorption sites on the suspended matter. Some dam reservoirs and ponds were subjected to integrated suspended sediment sampling. For the dam reservoirs, the particulate r-Cs activity concentration has been found to be water depth-dependent. Sediment cores collected at eight sites along the Abukuma river floodplain in 2018 and during October-November 2019, right after Typhoon Hagibis occurred in the middle of October 2019, demonstrated substantial redistribution of r-Cs due to erosion and redeposition during heavy rainfall and extreme flood. Bottom sediments coring in the dam reservoirs allowed estimation of the average sedimentation rate in the reservoirs and the rate of r-Cs accumulation. This research was partially supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-aid for Scientific Research (B) (18H03389), bilateral project No. 18-55-50002 of Russian Foundation for Basic Research (RFBR) and JSPS.</p>
<div> <div> <div> <p>The 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released large amounts of radioactive materials into the environment. River systems play an important role in the terrestrial redistribution of FDNPP-derived <sup>137</sup>Cs in association with water and sediment movement. We examined the seasonal fluctuations in dissolved and particulate <sup>137</sup>Cs activity concentrations and clarified the biological and physicochemical factors controlling <sup>137</sup>Cs in the Abukuma River&#8217;s middle course in the region affected by the FDNPP accident. The results showed the water temperature and K+ concentration dominated the seasonality of the dissolved <sup>137</sup>Cs activity concentration. We concluded that the <sup>137</sup>Cs in organic matter is not a source of dissolved <sup>137</sup>Cs in river water. The study also revealed the temperature dependence of Kd in riverine environments from a Van &#8217;t Hoff equation. The standard reaction enthalpy of <sup>137</sup>Cs in the Abukuma River was calculated to be approximately &#8722;19.3 kJ/mol. This was the first study to clearly reveal the mechanisms by which the dissolved <sup>137</sup>Cs activity concentration and Kd are influenced by chemical and thermodynamic processes in the middle course of a large river, and it is expected to lead to an improved model of <sup>137</sup>Cs dynamics in rivers.</p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.