International audienceHighly dispersed crystalline/amorphous LiFePO4 (LFP) nanoparticles encapsulated within hollow-structured graphitic carbon were synthesized using an in situ ultracentrifugation process. Ultracentrifugation triggered an in situ sol–gel reaction that led to the formation of core–shell LFP simultaneously hybridized with fractured graphitic carbon. The structure has double cores that contain a crystalline LFP (core 1) covered by an amorphous LFP containing Fe3+ defects (core 2), which are encapsulated by graphitic carbon (shell). These core–shell LFP nanocomposites show improved Li+ diffusivity thanks to the presence of an amorphous LFP phase. This material enables ultrafast discharge rates (60 mA h g-1 at 100C and 36 mA h g-1 at 300C) as well as ultrafast charge rates (60 mA h g-1 at 100C and 36 mA h g-1 at 300C). The synthesized core–shell nanocomposites overcome the inherent one-dimensional diffusion limitation in LFP and yet deliver/store high electrochemical capacity in both ways symmetrically up to 480C. Such a high rate symmetric capacity for both charge and discharge has never been reported so far for LFP cathode materials. This offers new opportunities for designing high-energy and high-power hybrid supercapacitors
S100A9 in BALF might serve as a candidate biomarker to discriminate between IPF and other fibrotic interstitial pneumonias.
BackgroundAcute exacerbations of idiopathic pulmonary fibrosis are major causes of morbidity and mortality among patients with idiopathic pulmonary fibrosis. However, acute exacerbations remain unpredictable. The aim of this study was to investigate risk factors for acute exacerbations of idiopathic pulmonary fibrosis.MethodsWe performed a retrospective cohort study of patients with idiopathic pulmonary fibrosis who visited our institutions from January 1999 to September 2014. We investigated risk factors for acute exacerbations in patients with idiopathic pulmonary fibrosis diagnosed retrospectively based on the official 2011 idiopathic pulmonary fibrosis ATS/ERS/JRS/ALAT Update Statement.ResultsThe idiopathic pulmonary fibrosis study cohort included 65 subjects. The median follow-up period was 2.6 years. During follow-up, 24 patients (36.9 %) experienced acute exacerbations. A Kaplan-Meier curve demonstrated that the 1-year, 2-year, and 3-year incidences of acute exacerbation were 9.6, 19.2 and 31.0 %, respectively. Acute exacerbation exerted a significant impact on overall survival among those with the disease. A log-rank test showed that baseline cardiovascular diseases, higher GAP (gender, age, physiology) stage (≥II), higher serum lactate dehydrogenase level (≥180 U/L), higher serum surfactant protein-D level (≥194.7 ng/mL), higher neutrophil (≥1.77 %) and eosinophil (≥3.21 %) percentages in bronchoalveolar lavage fluid samples, and treatment with an immunosuppressive agent after diagnosis were associated with poor acute exacerbation-free probability. In the Cox analysis adjusted for treatment with an immunosuppressive agent, baseline cardiovascular diseases, higher GAP stage (≥II), and higher eosinophil percentage (≥3.21 %) in bronchoalveolar lavage fluid samples were predictors of an acute exacerbation of idiopathic pulmonary fibrosis.ConclusionsThis study demonstrated that baseline cardiovascular diseases, higher GAP stage (≥II), and higher eosinophil percentage (≥3.21 %) in bronchoalveolar lavage fluid samples were associated with the onset of an acute exacerbation of idiopathic pulmonary fibrosis.
Little is known about the pathophysiology of acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF). Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules. Previous studies in experimental animal fibrosis models have shown that downregulation of HSP47 expression reduces collagen production and diminishes fibrosis progression. In this study, serum HSP47 levels were evaluated to elucidate pathogenic differences involving HSP47 between AE-IPF and stable (S)-IPF. -013-0411-5 and lactate dehydrogenase (LDH) were measured. Immunohistochemical analysis of lung HSP47 expression was determined in biopsy and autopsy tissues diagnosed as diffuse alveolar damage (DAD) and usual interstitial pneumonia (UIP). Serum levels of HSP47 were significantly higher in AE-IPF than in S-IPF patients, whereas serum levels of KL-6, SP-A, and SP-D did not differ significantly. Receiver operating characteristic curves revealed that HSP47 was superior for discriminating AE-IPF and S-IPF. The cutoff for HSP47 resulting in the highest diagnostic accuracy was 559.4 pg/mL; sensitivity, specificity, and diagnostic accuracy were 100.0 %, 93.9 %, and 96.2 %, respectively. Immunohistochemical analysis revealed that pulmonary HSP47 expression was greater in DAD than UIP tissues. Serum HSP47 was significantly higher in AE-IPF than in S-IPF patients, suggesting that underlying fibrogenic mechanisms involving HSP47 differ in the two conditions.Cell Stress and Chaperones (2013) 18:581-590 DOI 10.1007/s12192
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.