Although third‐generation epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKI) can overcome T790M‐mediated resistance in non‐small‐cell lung cancer (NSCLC), rebiopsy to confirm T790M status is occasionally difficult. We aimed to investigate the current tendency and the limitations of rebiopsy in clinical practice. This study included 139 consecutive NSCLC patients with EGFR mutations, who had experienced progressive disease (PD) after EGFR‐TKI treatment. We retrospectively reviewed patient characteristics, tumor progression sites and rebiopsy procedures. Of 120 patients (out of the original 139) who were eligible for clinical trials, 75 (63%) underwent rebiopsy for 30 pleural effusions, 32 thoracic lesions, four bone, two liver, and seven at other sites. Rebiopsy procedures included 30 thoracocentesis, 24 transbronchial biopsies, 13 computed tomography (CT)‐guided needle biopsies and 8 other procedures. Of the 75 rebiopsied patients, 71 (95%) were pathologically diagnosed with malignancy; and 34 (45%) had available tissue samples for EGFR analyses. Of the 75 biopsied patients, 61 (81%) were analyzed for EGFR mutation, using tissue or cytology samples; T790M mutations were identified in 20 (33%) of the 61 patients. Of the 120 patients, 45 (38%) did not undergo rebiopsy, because of inaccessible tumor sites (n = 19), patient refusal (n = 6) or decision of physician (n = 10). In conclusion, among patients with EGFR mutations who had PD after EGFR‐TKI treatment, 63% underwent rebiopsy. Most rebiopsy samples were diagnosed with malignancy. However, tissue samples were less available and T790M mutations were identified less frequently than in previous studies. Skill and experience with rebiopsy and noninvasive alternative methods will be increasingly important.
BackgroundElderly patient with advanced cancer is one of the most vulnerable populations. Skeletal muscle depletion during chemotherapy may have substantial impact on their physical function. However, there is little information about a direct relationship between quantity of muscle and physical function. We sought to explore the quantitative association between skeletal muscle depletion, and muscle strength and walking capacity in elderly patients with advanced non–small cell lung cancer (NSCLC).MethodsThirty patients aged ≥70 years with advanced NSCLC (stage III-IV) scheduled to initiate first-line chemotherapy were prospectively enrolled between January 2013 and November 2014. Lumbar skeletal muscle index (LSMI, cm2/m2), incremental shuttle walking distance (ISWD, m), and hand-grip strength (HGS, kg) were assessed at baseline, and 6 ± 2 weeks (T2) and 12 ± 4 weeks (T3) after study enrollment. Associations were analyzed using linear regression.ResultsAltogether, 11 women and 19 men with a median age of 74 (range, 70–82) years were included in the study; 24 received cytotoxic chemotherapy and 6, gefitinib. Mean ± standard deviation of LSMI, ISWD and HGS were 41.2 ± 7.8 cm2/m2, 326.0 ± 127.9 m, and 29.3 ± 8.5 kg, respectively. LSMI and ISWD significantly declined from baseline to T2 and T3. HGS significantly declined from baseline to T2 and T3 only in men. Change in LSMI was significantly associated with change in HGS (β = 0.3 ± 0.1, p = 0.0127) and ISWD (β = 8.8 ± 2.4, p = 0.0005).ConclusionsSkeletal muscle depletion accompanied with physical functional decline started in the early phase of the chemotherapy in elderly patients with advanced NSCLC. Our results suggest that there may be a need for early supportive care in these patients to prevent functional decline during chemotherapy.Trial registrationTrial registration number: UMIN000009768
Name of registry: UMIN (University hospital Medical Information Network).URL of registry: Date of registration: 14 January 2013.Date of enrolment of the first participant to the trial: 23 January 2013.
Considering the increasing number of identified driver oncogene alterations, additional genetic tests are required to determine the treatment for advanced nonsmall-cell lung cancer (NSCLC). Next-generation sequencing can detect multiple driver oncogenes simultaneously, enabling the analysis of limited amounts of biopsied tissue samples. In this retrospective, multicenter study (UMIN ID000039523), we evaluated real-world clinical data using the Oncomine Dx Target Test Multi-CDx System (Oncomine DxTT) as a companion diagnostic system. Patients with NSCLC who were tested for a panel of 46 genes using the Oncomine DxTT between June 2019 and January 2020 were eligible for enrollment. Patients from 19 institutions affiliated to the West Japan Oncology Group were recruited. The primary endpoint
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.