We present a novel large-context end-to-end automatic speech recognition (E2E-ASR) model and its effective training method based on knowledge distillation. Common E2E-ASR models have mainly focused on utterance-level processing in which each utterance is independently transcribed. On the other hand, large-context E2E-ASR models, which take into account long-range sequential contexts beyond utterance boundaries, well handle a sequence of utterances such as discourses and conversations. However, the transformer architecture, which has recently achieved state-of-the-art ASR performance among utterance-level ASR systems, has not yet been introduced into the large-context ASR systems. We can expect that the transformer architecture can be leveraged for effectively capturing not only input speech contexts but also long-range sequential contexts beyond utterance boundaries. Therefore, this paper proposes a hierarchical transformer-based large-context E2E-ASR model that combines the transformer architecture with hierarchical encoder-decoder based large-context modeling. In addition, in order to enable the proposed model to use long-range sequential contexts, we also propose a large-context knowledge distillation that distills the knowledge from a pre-trained large-context language model in the training phase. We evaluate the effectiveness of the proposed model and proposed training method on Japanese discourse ASR tasks.
We present an audio-visual speech separation learning method that considers the correspondence between the separated signals and the visual signals to reflect the speech characteristics during training. Audio-visual speech separation is a technique to estimate the individual speech signals from a mixture using the visual signals of the speakers. Conventional studies on audio-visual speech separation mainly train the separation model on the audio-only loss, which reflects the distance between the source signals and the separated signals. However, conventional losses do not reflect the characteristics of the speech signals, including the speaker's characteristics and phonetic information, which leads to distortion or remaining noise. To address this problem, we propose the cross-modal correspondence (CMC) loss, which is based on the cooccurrence of the speech signal and the visual signal. Since the visual signal is not affected by background noise and contains speaker and phonetic information, using the CMC loss enables the audio-visual speech separation model to remove noise while preserving the speech characteristics. Experimental results demonstrate that the proposed method learns the cooccurrence on the basis of CMC loss, which improves separation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.