Singlet fission, in which a singlet exciton is converted to two triplet excitons, is a process that could be beneficial in photovoltaic applications. A full understanding of the dynamics of singlet fission in molecular systems requires detailed knowledge of the relevant potential energy surfaces and their (conical) intersections. However, obtaining such information is a nontrivial task, particularly for molecular aggregates. Here we investigate singlet fission in rubrene crystals using transient absorption spectroscopy and state-of-the-art quantum chemical calculations. We observe a coherent and ultrafast singlet-fission channel as well as the well-known and conventional thermally assisted incoherent channel. This coherent channel is accessible because the conical intersection for singlet fission on the excited-state potential energy surface is located very close to the equilibrium position of the ground-state potential energy surface and also because of the excitation of an intermolecular symmetry-breaking mode, which activates the electronic coupling necessary for singlet fission.
A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited-state dynamics in solution. While the anthracene dimer showed a fast V-shaped-to-planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.
The excited-state dynamics of molecular aggregates are governed by their potential energy landscape that can hardly be controlled artificially. However, it is possible to alter the excited state dynamics by a strong coupling between light and molecules (polariton formation) because it can decouple the electronic and vibrational degrees of freedom. Here, we demonstrate this polaron decoupling effect on the photochemical dynamics in singlet fission (SF) of amorphous rubrene thin films embedded in optical microcavities. The vibronic feature of polariton states in this system is characterized through the analysis of steady state absorption spectra by using the Holstein-Tavis-Cummings model. On the basis of this analysis, we show with time-resolved spectroscopy that the SF rate following a resonant excitation of the lowest energy polariton state is indeed modulated when the cavity photon energy is changed. A numerical simulation by using Fermi’s golden rule formula with the vibronic polariton feature successfully accounts for the observed modulation of the SF rate, indicating that the polaron decoupling plays a decisive role in the nonadiabatic dynamics.
The
coupling between an electronic system and an environmental
bath plays a decisive role in the excited state dynamics of artificial/natural
molecular condensed phases. Although it is generally difficult to
control the coupling between the system and the thermal bath in condensed
matter, a strong light–matter coupling can control system–bath
coupling properties using the polaron decoupling effect, in which
a coherent interaction between excitons and photons reduces the reorganization
energy. Here we demonstrate that this polaron decoupling strongly
reduces the fluctuations in electronic energy in tetraphenyldibenzoperiflanthene
thin films embedded in an optical microcavity. Using two-dimensional
electronic spectroscopy, the frequency–fluctuation correlation
function of the lower polariton state was revealed, showing that the
dynamic inhomogeneity due to bath coupling inside the microcavity
almost vanishes completely. This was attributed to a significant delocalization
of the lower polariton state over 105 molecules in the
cavity, reducing the effective coupling strength of the bath modes.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.