The microbial TGase from Streptomyces mobaraensis has used in various food industries. However, the detailed substrate specificities of TGases from the Streptomyces species toward the natural peptides remains to be unclear. In this study, we conducted the comparison of two different TGases from Streptomyces mobaranensis (SMTG) and Streptomyces cinnamoneus (SCTG). To clarify the region associated with the characteristics of enzymes, we constructed a chimeric enzyme of CM, of which is consisted of N-terminal half of SCTG and C-terminal half of SMTG. To reveal the differences in the substrate specificity between SCTG and SMTG toward natural peptides, we investigated the time dependence of TGase activity on the productivity of cross-linking peptide with tryptic casein and lysine by using LC-MS. We identified two peptides of “VLPVPQK” and “AVPYPQR” as substrates for both of the TGases.
Cow's milk is one of the most common allergenic foods. Cow's milk allergy is mainly an IgE-mediated hypersensitivity reaction, and the major allergens from cow's milk have been found to be caseins, β-lactoglobulin, and α-lactalbumin. Several peptides derived from bovine casein are known allergens in cow's milk. To reduce their allergenicity, these proteins can be degraded by food-grade peptidases. We succeeded in detection of two peptides, VLPVPQK and FFVAPFPEVFGK, from bovine casein-derived allergen peptides by using an ion trap LC-MS apparatus. This study focuses on the synergistic effects of Streptomyces aminopeptidases belonging to the M1, M24, and M28 families on the degradation of the allergen peptides. From these results, we demonstrated that the combination of M1 and M24 aminopeptidases was the most effective for degrading the abovementioned allergenic peptides.
Pleurotus eryngii serine aminopeptidase that has peptide bond formation activity, redesignated as eryngase, was cloned and expressed. Eryngase has a family S9 peptidase unit in the C-terminal region having a catalytic triad of Ser, Asp, and His. In the phylogenetic relations among the subfamilies of family S9 peptidase (S9A, prolyl oligopeptidase; S9B, dipeptidyl peptidase; S9C, acylaminoacyl peptidase; S9D, glutamyl endopeptidase), eryngase existed alone in the neighbor of S9C subfamily. Mutation of the active site Ser524 of the eryngase with Ala eliminated its catalytic activity. In contrast, S524C mutant maintained low catalytic activity. Investigation of aminolysis activity using l-Phe-NH2 as a substrate showed that S524C mutant exhibited no hydrolysis reaction but synthesized a small amount of l-Phe-l-Phe-NH2 by the catalysis of aminolysis. In contrast, wild-type eryngase hydrolyzed the product of aminolysis l-Phe-l-Phe-NH2. Results show that the S524C mutant preferentially catalyzed aminolysis when on an l-Phe-NH2 substrate.
Family S9 prolyl oligopeptidases (POPs) are of interest as pharmacological targets. We recently found that an S9 POP from Pleurotus eryngii showed altered substrate specificity following HO treatment. Oxidation of Met203 on the non-catalytic β-propeller domain resulted in decreased activity toward non-aromatic aminoacyl-para-nitroanilides (pNAs) while maintaining its activity toward aromatic aminoacyl-pNAs. Given that the other Met residues should also be oxidized by HO treatment, we constructed mutants in which all the Met residues were substituted with other amino acids. Analysis of the mutants showed that Met570 in the catalytic domain is another potent residue for the altered substrate specificity following oxidation. Met203 and Met570 lie on the surfaces of two different domains and form part of a funnel from the surface to the active center. Our findings indicate that the funnel forms the substrate pathway and plays a role in substrate recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.