This is the first report of the natural occurrence of Miscanthus triploid plants in several decades. If found to be sterile and similar in productivity to the commonly cultivated clone of M. ×giganteus, these triploid plants might serve as additional sources of genetic variation for bioenergy production. Seed set data also indicates that other triploid plants might be found in more northern regions of Japan.
Miscanthus ×giganteus, which is a triploid hybrid between tetraploid M. sacchariflorus and diploid M. sinensis, has considerable potential as a bioenergy crop. Currently only one genotype is widely cultivated, increasing its vulnerability to diseases during production. Finding new hybrids is important to broaden genetic resources of M. ×giganteus. Three putative triploid hybrids were discovered in sympatric population of tetraploid M. sacchariflorus and diploid M. sinensis in Kushima, Japan. The hybrid nature of the triploids was determined by morphological analysis and sequencing the ribosomal DNA internal transcribed spacer region. The triploids had awns on their florets, which is a common characteristic of diploid M. sinensis, and sheath hairs, which is typical of tetraploid M. sacchariflorus. All triploids showed heterozygosity in their ribosomal DNA internal transcribed spacer sequences. Based on these results, it is confirmed that the triploids are hybrids and novel genotypes of M. ×giganteus. Natural crossing between tetraploid M. sacchariflorus × diploid M. sinensis may also lead to the production of tetraploid hybrids. ITS analysis of tetraploid plants showed that one maternal parent of the triploid hybrids, K-Ogi-1 had heterozygous ITS, which was different to the other analyzed tetraploid M. sacchariflorus. Thus, K-Ogi-1 was likely of hybrid origin. These tetraploid hybrids can also be utilized as parents in M. ×giganteus breeding. Since all hybrids identified in this study had tetraploid M. sacchariflorus as maternal parents, collecting and analyzing seeds from tetraploid M. sacchariflorus in sympatric areas could be an effective strategy to identify natural Miscanthus hybrids that can be used as bioenergy crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.