Upon extending a hydrophobic polymer chain from the end of a preceding hydrophilic chain in aqueous solutions, the resultant block copolymers may eventually undergo self-assembly.
Core-shell-corona micelles featuring a pH-responsive shell have been characterized in dilute aqueous solution at different pH values (4-8) by using dynamic light scattering (DLS), field-flow fractionation coupled with multiangle light scattering detector (FFF-MALS), steady-state fluorescence, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The micelles are formed by self-assembly of a polyether-based triblock terpolymer consisting of a hydrophobic poly( tert-butyl glycidyl ether) block (P tBGE), a pH-responsive modified poly(allyl glycidyl ether) segment (PAGE), and a neutral hydrophilic poly(ethylene oxide) block (PEO). Because of the side-chain carboxylic acids in the middle block, the micellar structure and size depends on the solution pH. Hereby, we show that an increase in pH induces a decrease in the aggregation number ( N). In addition, the combination of the above measurements revealed an unexpected morphological change from spherical to ellipsoidal micelles by increasing pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.