We propose a novel upsampling approach that is suitable for hardware implementation. Compared with past super-resolution (SR) upsampling methods (e.g. example based upsampling), structure of our upsampling approach is very simple. Strategy of our approach is mainly 2 terms; off-line training term and realtime upscaling term. (i)During training term, grouping lowresolution (LR)-high-resolution (HR) patch pairs and determined a linear regression function of each groups. And (ii)during upscaling term, assigning pattern number to each of input LR patches according to the signature using a local binary pattern (LBP), and transforming input LR patches to HR patches by applying the trained regression function based on the LBP in a patch-by-patch fashion. Our evaluation result shows that our method is comparable to other state-of-the-art methods. Furthermore, our approach is compactly implemented on LSI (e.g. FPGAs) or be shorten the processing time on software because of simplicity of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.