The sequence data from 5' UTR, intronic, coding and 3' UTR regions of Ppd-A1 and Ppd-B1 were investigated for a total of 158 accessions of emmer wheat landraces comprising 19 of wild emmer wheat (Triticum dicoccoides), 45 of hulled emmer wheat (T. dicoccum) and 94 of free-threshing (FT) emmer wheat (T. durum etc.). We detected some novel types of deletions in the coding regions from 22 hulled emmer accessions and 20 FT emmer accessions. Emmer wheat accessions with these deletions could produce predicted proteins likely to lack function. We also observed some novel mutations in Ppd-B1. Sixty-seven and forty-one haplotypes were found in Ppd-A1 and Ppd-B1, respectively. Some mutations found in this study have not been known, so they have potential for useful genetic resources for wheat breeding. On the basis of sequence data from the 5' UTR region, both Ppd-A1 and Ppd-B1 haplotypes were divided into two groups (Type AI/AII and Type BI/BII). Types AI and AII of Ppd-A1 suggested gene flow between wild and hulled emmer. On the other hand, Types BI and BII of Ppd-B1 suggested gene flow between wild and FT emmer. More than half of hulled emmer accessions were Type AII/BI but few FT emmer accessions were of this type. Therefore, over half of the hulled emmer did not contribute to evolution of FT emmer.
According to the slash-and-burn technique used in Eastern Province, Zambia, cut trees are piled and burned in only a part of the cleared fields, because adequate tree biomass is not available to burn the entire field. Due to a recent decrease in emergent trees, not only emergent tree piles but also bush tree piles may exist. Therefore, our objective was to evaluate the changes in soil organic matter followed by nutrient release occurring immediately after burning in spots unburned and burned with emergent and bush trees. Fire intensity was significantly higher where emergent tree piles were present. Total carbon (C) decreased by 25.1% and 14.7% in spots burned with emergent and brush tree piles, respectively, while total nitrogen (N) decreased by 15.0% only at spots burned with emergent tree piles and did not change significantly elsewhere. Additionally, the mortality of microbes with soil heating caused an increase in C mineralization after fire. The levels of available nutrients, such as ammonium nitrogen (NH 4 -N), available phosphorus (P), and exchangeable potassium (K) and calcium (Ca), increased following the decomposition of soil organic matter and microbial mortality that occurred with an increase in fire intensity. Net N mineralization did not occur, especially in spots burned with emergent tree piles, because the N content of labile organic matter decreased. Maize (Zea mays L.) grain yield increased with fire intensity, because fire increased nutrient availability and limited weed biomass. Although the burned emergent and bush tree piles occupied only 6.9 and 7.5% of total cleared field, respectively, the grain yield in spots burned with emergent and bush trees accounted for 21% and 15% of the total yield, respectively. Therefore, the burning of bush trees, which is increasing because of the decreased number of emergent trees, could result in a decrease in grain yield but could also alleviate the overall severe loss of soil organic matter.
In this study, we investigated the genetic diversity and population structure of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank NBRP-Wheat. The core collection, consisting of 188 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii, was intensively genotyped by DArTseq markers and consisted of 20,186 SNPs and 60,077 present and absent variations (PAVs). Polymorphic markers were distributed in all chromosomes, with a tendency for smaller numbers on the D-genome chromosomes. We examined the population structure by Bayesian clustering and principal component analysis with a general linear model. Overall, the core collection was divided into seven clusters. Non-admixture accessions in each cluster indicated that the clusters reflect the geographic distribution of the accessions. Both structure analyses strongly suggested that the cluster consisting of T. spelta and T. macha is out-grouped from other hexaploid wheat accessions. We performed genome-wide association analysis pilot studies for nine quantitative and seven qualitative traits and found marker-trait associations for all traits but one, indicating that the current core collection will be useful for detecting uncharacterized QTLs associated with phenotypes of interest.
Genetic diversity in cytoplasmic and nuclear genomes and their interaction affecting adaptive traits is an attractive research subject in plants. We addressed submergence stress response of wheat that has become increasingly important but remained largely uninvestigated. Our primary aim was to disclose cytoplasmic diversity using nucleus-cytoplasm (NC) hybrids possessing a series of heterologous cytoplasms in a common nuclear background. Effects of submergence on seedling emergence and growth from imbibed seeds were studied and compared with euplasmic lines. Marked phenotypic variabilities were observed among both lines, demonstrating divergent cytoplasmic and nuclear effects on submergence response. NC hybrids with cytoplasm of Aegilops mutica showed a less inhibition, indicative of their positive contribution to submergence tolerance, whereas cytoplasms of Aegilops umbellulata and related species caused a greater inhibition. Superoxide dismutase (SOD) activity showed a marked increase accompanied by retardation of seedling growth in a susceptible NC hybrid. The observation suggested that the elevated SOD activity was resulted from a high level of reactive oxygen species accumulated and remained in susceptible seedlings. Taken together, our results point to the usefulness of NC hybrids in further studies needed to clarify molecular mechanisms underlying the nucleus-cytoplasm interaction regulating submergence stress response in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.