Ketamine is used clinically for anesthesia but is also abused as a recreational drug. Previously, it has been established that ketamine-induced bladder interstitial cystitis is a common syndrome in ketamine-abusing individuals. As the mechanisms underlying ketamine-induced cystitis have yet to be revealed, the present study investigated the effect of ketamine on human urothelial cell lines and utilized a ketamine-injected mouse model to identify ketamine-induced changes in gene expression in mice bladders. In the in vitro bladder cell line assay, ketamine induced cytotoxicity in a dose- and time-dependent manner. Ketamine arrested the cells in G1 phase and increased the sub-G1 population, and also increased the barrier permeability of these cell lines. In the ketamine-injected mouse model, ketamine did not change the body weight and bladder histology of the animals at the dose of 30 mg/kg/day for 60 days. Global gene expression analysis of the animals’ bladders following data screening identified ten upregulated genes and 36 downregulated genes induced by ketamine. A total of 52% of keratin family genes were downregulated, particularly keratin 6a, 13 and 14, which was confirmed by polymerase chain reaction analysis. Keratin 14 protein, one of the 36 ketamine-induced downregulated genes, was also reduced in the ketamine-treated mouse bladder, as determined by immunohistochemical analysis. This suggested that cytotoxicity and keratin gene downregulation may have a critical role in ketamine-induced cystitis.
Our previous study demonstrated that the glutathione S-transferase Mu 5 (GSTM5) gene is highly CpG-methylated in bladder cancer cells and that demethylation by 5-aza-dC activates GSTM5 gene expression. The aim of the present study was to investigate the role of GSTM5 in bladder cancer. The levels of GSTM5 gene expression and DNA methylation were analyzed in patients with bladder cancer, and functional studies of GSTM5 were conducted using GSTM5 overexpression in cultured bladder cancer cells. Clinical analysis revealed that the GSTM5 mRNA expression was lower in bladder cancer tissues than in normal tissues and that the level of GSTM5 DNA methylation was higher in bladder cancer tissues than in normal urine pellets. Overexpression of GSTM5 decreased cell proliferation, migration and colony formation capacity. Glutathione (GSH) assay results indicated that cellular GSH concentration was decreased by GSTM5 expression and that GSH supplementation reversed the decrease in proliferation and migration of cells overexpressing GSTM5. By contrast, a GSH synthesis inhibitor significantly decreased 5637 cell GSH levels, survival and migration. Furthermore, GSTM5 overexpression inhibited the adhesion of cells to the extracellular matrix protein fibronectin. To elucidate the effect of GSTM5 on anticancer drugs used to treat bladder cancer, cellular viability was compared between cells with or without GSTM5 overexpression. GSTM5-overexpressed cells showed no significant change in the cytotoxicity of cisplatin or mitomycin C in 5637, RT4 and BFTC 905 cells. Though a degree of resistance to doxorubicin was noted in 5637 cells overexpressing GSTM5, no such resistance was observed in RT4 and BFTC 905 cells. In summary, GSTM5 plays a tumor suppressor role in bladder cancer cells without significantly affecting chemoresistance to cisplatin and mitomycin C, and the cellular GSH levels highlight a key mechanism underlying the cancer inhibition effect of GSTM5. These findings suggest that low gene expression and high DNA methylation levels of GSTM5 may act as tumor markers for bladder cancer.
Long-term ketamine abuse has been shown to affect the lower urinary tract and result in interstitial cystitis-like syndrome. However, the causative mechanism of ketamine-induced dysfunction remains unclear. The present study aimed to investigate the physiological, histological and molecular changes on ketamine-associated cystitis (KC) in a mouse model. Both male and female Balb/c mice were separately distributed into the control group (normal saline) and ketamine group, which received ketamine hydrochloride (100 mg/kg/day) daily by intraperitoneal injection for a total period of 20 weeks. In each group, the urine was analyzed by gas chromatography-mass spectrometry to measure the concentration of ketamine and its metabolites. Urinary frequency and urine volume were examined to investigate the urinary voiding functions. Mice bladders were excised for cDNA microarray and hematoxylin and eosin (HE) staining. The ketamine and metabolites were detected only in ketamine-treated mice urine. The voiding interval was reduced in the male mice group after 20 week ketamine administration. Additionally, the result of cDNA array analysis revealed a number of gene expression levels involved in chronic wound healing response and collagen accumulation, which were closely associated with fibrosis progression in the connective tissue. In HE staining of the bladder tissue, the ketamine-injected mice exhibited prominently denser blood vessel distribution in the submucosal layer. Based on the evidence in the present study, a mechanism that delineates fibrosis formation of urinary bladder induced by the pathogenesis of ketamine abuse can be constructed.
Histone deacetylase (HDAC) inhibitors have been widely shown to result in cancer cell death. The present study investigated the mechanisms underlying the antitumor effects of the phytochemical trichostatin A (TSA), a classic pan-HDAC inhibitor, in 5,637 urinary bladder cancer cells. It was found that TSA caused cell cycle arrest at the G2/M and G1 phase accompanied by reduced expression of cyclin D1 and upregulated induction of p21. In addition, TSA induced morphological changes, reduced cell viability and apoptotic cell death in 5,637 cells through caspase-3 activation followed by PARP cleavage. The loss of mitochondrial membrane potential (MMP) indicated that TSA induced apoptosis in 5,637 cells through the intrinsic mitochondrial pathway. TSA significantly suppressed Akt activity at 12 h after treatment, suggesting that the apoptosis in the early phase was mediated by Akt inhibition. In addition, the protein level of transcription factor Sp1 was decreased at 24 h after TSA treatment, which likely led to the downregulation of survivin gene expression, and then contributed to the antitumor activity of TSA. Taken together, the present study delineated that TSA-induced growth inhibition and apoptosis in 5,637 cells was associated with pAKT inhibition and MMP loss at the early phase, followed by downregulation of Sp1 and survivin at the late phase of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.