<p>The vertical deflection of the main girder on a cable-stayed bridge is a direct reflection of the vertical stiffness of bridge structure, which represents the comprehensive mechanical performance of cable-stayed bridge. Compared with the deflection caused by vehicles, the deflection caused by temperature is often more significant and the change frequency is very low, which is easy to extract from raw data, and can be used as an index to evaluate the state of cable-stayed bridge. To obtain the control value for recognizing the abnormal deflection, it is necessary to establish an accurate input-output relationship between temperature and temperature-induced deflection. However, because of the high-order nonlinear relationship between the temperature and the temperature-induced deflection, the traditional linear regression is not accurate enough in modeling this relationship. To establish a high-precision model for the deflection, this paper uses the machine learning tools with the highly nonlinear fitting performance to further model the project. Considering both the precision and modeling efficiency, the Long-Short Term Memory (LSTM) network can build the optimal model between temperature and temperature-induced deflection. Use the regression value output by LSTM as the control value combining with the statistical pattern of t-test, the 6% abnormal deflection can be recognized. The 6% sensitivity can help to recognize bridge abnormalities earlier. </p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.