Tumor-associated carbohydrate antigens (TACAs) are useful targets in the development of therapeutic cancer vaccines. However, a serious problem with them is the poor immunogenicity. To overcome the problem, a monophosphorylated derivative of Neisseria meningitidis lipid A was explored as a potential carrier molecule and built-in adjuvant for the construction of structurally defined fully synthetic glycoconjugate vaccines. Some paradigm-shifting discoveries about the monophosphoryl lipid A (MPLA)-TACA conjugates were that they elicited robust IgG antibody responses, indicating T cell-mediated immunity, without an external adjuvant and that an external adjuvant, e.g., Titermax Gold, actually reduced, instead of promoting, the immunological activity of the conjugates. The induced antibodies were proved to bind selectively to target tumor cells. MPLA was therefore demonstrated to be a powerful built-in immunostimulant and adjuvant for an all new design of fully synthetic glycoconjugate cancer vaccines.
We present the application of a bioinspired collective synthesis strategy in the total syntheses of seven iboga-type indole alkaloids: (±)-tabertinggine, (±)-ibogamine, (±)-ibogaine, (±)-ibogaine hydroxyindolenine, (±)-3-oxoibogaine hydroxyindolenine, (±)-iboluteine, and (±)-ervaoffines D. In particular, tabertinggine and its congeners serve as iboga precursors for the subsequent biomimetic transformations into other iboga-type alkaloids.
A scalable, efficient total synthesis of mupirocin H was accomplished in 7 longest linear steps with 39% overall yield. The developed strategy is great progress for the construction of pseudomonic acid analogues and all steps in our strategy could be conducted on a gram scale. The strategy is also suitable for other related molecules. Fig. 1 Chemical structures of pseudomonic acids, mupirocin W (1) and mupirocin H (2). † Electronic supplementary information (ESI) available. See
Monophosphoryl lipid A is a safe and potent immunostimulant and vaccine adjuvant, which is potentially useful for the development of effective carbohydrate-based conjugate vaccines. This paper presented a convergent and efficient synthesis of a monophosphoryl derivative of E. coli lipid A having an alkyne functionality at the reducing end, which is suitable for the coupling with various molecules. The coupling of this derivative to an N-modified analog of tumor-associated antigen GM3 by click chemistry is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.